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Thermoelectric effect

The thermoelectric effect is the direct conversion of temperature
differences to electric voltage and vice versa via a thermocouple.
Seebeck coefficient: S = dV/dT.
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Figure 1: A thermoelectric circuit composed of materials of different
Seebeck coefficients (p-doped and n-doped semiconductors),
configured as a thermoelectric generator.
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Thermal-to-electric heat engine
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Figure 2: Optimizing ZT through carrier concentration tuning

How to imporve ZT when k and o are closely coupled?
o Thermoelectric figure of metrit : ZT = S20T/k
o k=ke+k,

o Wiedemann-Franz law: ko = LoT
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Abstract

Main challenge

The main challenge in direct heat-to-electricity conversion is to
experimentally realize continuous thermodynamic cycles that
sidestep the coupling of entropy, heat and charge transport and
operate across a broad range of temperatures.

This work

This work leverages the progress in flow batteries and fuel cells
to experimentally demonstrate continuous electrochemical heat
engines based on two redox-active working fluids separated by
ion-selective membranes.
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Redox-Flow Battery
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Figure 3: The Vandium Redox-Flow Battery.

Convert chemical energy into electric energy.
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Analogy

Temperature coefficient: o = dV/dT
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Figure 4: Continuous electrochemical heat engine. Convert heat into

electric energy.
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Continuous electrochemical heat engin
Al

o Entropy transport:
reaction at constant temperature-

o Charge transport:

membranes: ion; electrodeg: electron.

o Mass and heat transport,
electrolyte flow
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Figure 5: Continuous electrochemical heat engine. Convert heat into
electric energy.
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Electrical and thermal irreversibilities
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Figure 6: Electrical and thermal irreversibilities in the continuous
electrochemical heat engine.
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Dependence of cell potentials on temperature.
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@ the slope of the line is
equivalent to the total

e AVpc = (a1 — ag)AT.
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Figure 7: Open-circuit voltages of
electrochemical cells.

thermopower (a; — aw).
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Polarization curve and maximum power

Figure 8: Two electrochemical heat engines developed in this

work.
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Efficiency and power
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Figure 9: Simulations of gas-based continuous electrochemical heat
engines. (A) Effiency and power parametrized by the current-vlogate
curves. The four curves correspond to a counterflow heat exchanger

rated for 2, 5, 10, and 20 WK~!. (B)-(C) Maximum power density
and efficiency as a function of Ty and T¢.
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Efficiency and power
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Figure 10: Simulations of liquid-based continuous electrochemical heat
engines. Maximum power density (A) and efficiency at the maximum
power point (B) for a heat engine operating between 50 °C and 10 °C
as a function of redox-active fluid properties o and k0, with
concentrations of active species corresponding to the experimental
system. (C) Concentrations of activate species increased to 15M.
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Comparison

Table 1: Comparison between solid-state thermoelectrics and
continuous electrochemical heat engines developed in this work.

Solid-state
thermoelectrics

Electrochemical heat

engines
Mechanism Temperature .dependent Tempera.xture deper.ldent
thermoelectric voltage reaction potential
Parameter Seeback coefficient: Thermopower:
a=dE/dT a = AS/nF
Thermal . Convection of working
Conduction .
transport fluids
Electrical Ton-conductance and
Conduction conduction in the
transport
electrodes
Stacking Will increase heat leaks | Won’t increase heat leaks
Efficiency 5% - 15% 7.

Over 30%.




Conclusion

o The work demonstrated two electrochemical heat engines
operating in very different temperature regimes.

o Based on system modeling, the continuous electrochemical
heat engine can scalably reach maximum power point
efficiencies well over 30% of 7. under diverse operating
conditions.

@ By decoupling thermal and electrical entropy generation
pathways, the work demonstrated effective energy
conversion in regimes heretofore inaccessible to TE, TG,
regenerative, or other thermal-fluid heat engines.
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