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Overview

☼ Under gray-media approximation, Dr.Hua developed a
semi-empirical thermal resistance model which could
consider the influence of both thermal spreading and
ballistic effects.

☼ Whereas real semiconductor materials like GaN exhibit an
extremely broad distribution of phonon MFPs, the validity
of the model needs to be further verified.

☼ We inspected the model-predicted thermal spreading
resistance by Phonon Monte Carlo simulations with the
phonon dispersion of various typical semiconductor
materials. Based on the analyses of deviations, the model
was further revised and generalized.
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Wide Bandgap Semiconductors

� Wide bandgap (WBG) semiconductors like GaN HEMTs,
SiC MESFETs, and recently burgeoning untra-WBG
β-Ga2O3 based devices, show excellent electronic
properties.

� Whereas owing to their super high power density, the
actural performance is largely restricted by the significant
over-heating within the device.

� Heat generation is extremely localized at the top of the
channel layer, which results in a near-junction temperature
spike, or so-called ”hot-spot”.
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Thermal Spreading
Thermal spreading resistance occurs when heat enters the
system through a small region and is transferred by conduction
to a larger region or heat sink.

Figure 1: Typical structure of GaN HEMTs.
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Thermal Spreading Resistance Model

Thermal spreading resistance models have been extensively
studied based on Fourier’s heat conduction law,1
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Current models don’t take ballistic effects into account.

1Y. Muzychka, J. Culham, and M. Yovanovich, “Thermal spreading resistance of eccentric heat sources on
rectangular flux channels,” J. Electron. Packag., vol. 125, no. 2, pp. 178–185, 2003.
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Problem Statement
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Figure 2: Schematic for the basic system in a single period.

The geometry of the system can be characterized by:

wg/w and w/t

Two Knudsen numbers, Knt and Knw , were defined to
characterize the strength of ballistic effects,

Knt = l0/t , Knw = l0/wg
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Thermal Resistance Model2 - Decoupling
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2Y.-C. Hua, H.-L. Li, and B.-Y. Cao, “Thermal spreading resistance in ballistic-diffusive regime for gan
hemts,” IEEE Transactions on Electron Devices, vol. 66, no. 8, pp. 3296–3301, 2019.
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Effective Thermal Conductivity

Ballistic effects can be represented by the degradation of the
effective thermal conductivity of nanostructures,

Rt = RF (keff )

keff
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) (
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The degradation of the effective thermal conductivity is caused
by the suppression of mean free paths of phonons,
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MFP Distribution of Real Semiconductor Materials
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Figure 3: Normalized thermal conductivity accumulation functions of
GaN, AlN, and 4H-SiC at temperatures near 300 K as a function of
phonon MFP.3

3J. P. Freedman, J. H. Leach, E. A. Preble, et al., “Universal phonon mean free path spectra in crystalline
semiconductors at high temperature,” Scientific reports, vol. 3, no. 1, pp. 1–6, 2013.
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This Work

Motivation
� When faced with such a broad distribution of phonon

MFPs, could the model still keep valid and address the
thermal spreading and ballistic effects well?

This Work
± Dispersion Phonon Monte Carlo simulations were

conducted to verify the reliability of the model, and the
model was further revised based on analyses of deviations
between the results.

± The thermal resistance and temperature distributions
predicted by MC simulations and FEM with the effective
thermal conductivity were compared, which illustrates the
practicability of our model.
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Phonon Dispersion

• An isotropic sine-shaped phonon dispersion (Born-von
Karman dispersion) is used.

• Longitudinal and transverse branches are not
differentiated.

ω(k) = ωmax sin (πk/2km)

km =

(
6π2N

V

)1/3

, a = π/km, ωm = 2v0g/a
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Relaxation time

Matthiessen’s rule:

τ−1 = τ−1
impurity + τ−1

U = Aω4 + Bω2T exp(−C/T )

Thermal conductivity fitting:
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Phonon Dispersion and Relaxation time

Parameter (Unit) GaN AlN SiC β-Ga2O3

k0 (1 × 109 m−1) 10.94 11.19 8.94 6.74

ωm (1 × 1013 rad/s) 3.50 5.18 7.12 1.6

aD (Å) 2.87 2.81 3.51 4.66

A (1 × 10−45 s3) 5.26 10.5 1.00 1.38E-6

B (1 × 10−19 s/K) 1.10 0.728 0.596 9.31

C (K) 200 287.5 235.0 62.6

Table 1: Fitted phonon dispersion and scattering parameters for
typical WBG semiconductors4. For β-Ga2O3, thermal conductivity
along [100] crystallographic direction was used to fit the parameters.

4Q. Hao, H. Zhao, and Y. Xiao, “A hybrid simulation technique for electrothermal studies of two-dimensional
gan-on-sic high electron mobility transistors,” Journal of Applied Physics, vol. 121, no. 20, p. 204 501, 2017.
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Energy-based Variance-reduced Monte Carlo
When considering phonon dispersion, the main difference is
that phonon bundles emitted from phonon baths will have differ-
ent properties, and their properties will be redetermined after
phonon–phonon scattering5.

Emitting Sampling

Wph−bnd =
Cp,ωvp,ω∑

p
∫
ω Cp,ωvp,ωdω

dω

Scattering Sampling

Wph−ph =
Cp,ωvp,ω/lp,ω∑

p
∫
ω (Cp,ωvp,ω/lp,ω)dω

dω

5H.-L. Li, J. Shiomi, and B.-Y. Cao, “Ballistic-diffusive heat conduction in thin films by phonon monte carlo
method: Gray medium approximation versus phonon dispersion,” Journal of Heat Transfer, vol. 142, no. 11,
p. 112 502, 2020.
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Total Thermal Resistance
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Figure 4: Dimensionless total thermal resistance of GaN as a function
of w/t with wg/w = 0.01 under different thickness.
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Analysis of Deviations
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Decoupling of Different Ballictic Effects
• The deviation is mainly caused by the insufficiency of the

model to reflect ballistic effects due to broad phonon MFP
distributions.

• The key issue here is to decouple the effects of
cross-plane ballistic part and heat-source ballistic part.
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Elimination of Heat-Source Ballistic Part

Original model,
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Total Thermal Resistance of Model 1
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Figure 5: Dimensionless total thermal resistance of GaN as a function
of w/t with wg/w = 0.01 under different thickness.
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Weighted Average of Modal Phonon MFPs

The Average phonon MFP could be extracted by employing
Majumdar’s model for cross-plane heat conduction to calculate
F (j , ω) and fit the dispersion results.

keff /kbulk =
1
3

∑
j

∫ ωj

0
ℏω

∂f0
∂T

DOSj(ω)vgωjF (j , ω)dω/kbulk

=
1

1 + 4/3 · lave/L

Our previous studies demonstrated that this way to extract the
phonon averate MFP could reflect the mode dependent MFP
depression well6.

6H.-L. Li, J. Shiomi, and B.-Y. Cao, “Ballistic-diffusive heat conduction in thin films by phonon monte carlo
method: Gray medium approximation versus phonon dispersion,” Journal of Heat Transfer, vol. 142, no. 11,
p. 112 502, 2020.
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Weighted Average of Modal Phonon MFPs

Material Average MFP (nm)

GaN 1612.3

AlN 3401.4

SiC 2506.96

β-Ga2O3 450.7

Table 2: The average phonon MFP of different materials.

The average Knudsen numbers could be then defined to
characterize the strength of the ballistic effects,

Knt = lave/t
Knw = lave/wg
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Dependence Analysis of rKnt

rKnt = RMC/RModel-1
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Figure 6: Thermal resistance ratio as a function of Knt of different
materials.
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Elimination of Cross-Plane Ballistic Part

Original model,
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Model 2: Apply rKnt to lj,m,
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Total Thermal Resistance of Model 2
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Figure 7: Dimensionless total thermal resistance of GaN as a function
of w/t with wg/w = 0.01 under different thickness.

Knw =
l0

(wg/w) · (w/t) · t
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Dependence Analysis of rKnw

rKnw = RMC/RModel-2
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Figure 8: Thermal resistance ratio as a function of Knw .
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Dependence Analysis
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Figure 9: Fitting parameter b varying with wg/t .

rKnw = −0.17 · log(Knw ) + b(wg/t)
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Revised Thermal Resistance Model

Rt = RF (keff)
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It should be noted that the revised thermal resistance model is
still dispersion-independent.
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Total Thermal Resistance
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Figure 10: Dimensionless total thermal resistance of Different
semiconductor materials as a function of w/t with wg/w = 0.01 and
t = 2.7 µm.
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Temperature Distribution
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(a) Dispersion MC.
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(b) FEM with keff .

Figure 11: Dimensionless temperature distributions by FEM with keff
and Dispersion MC.
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Temperature Distribution
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Figure 12: Temperature distribution at the top surface of the system.

FEM with effective thermal conductivity can give nearly the
same peak temperature rise as that calculated by dispersion
MC.
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Computation Time

0 1 2 3 4 5

t (µm)

1

101

102

103

104

105

C
om

p
u

ta
ti

on
ti

m
e

(s
)
Dispersion MC

FEM with keff

Figure 13: Computation time of Dispersion MC with 2 × 107 phonons
and FEM with keff as a function of channel thickness using single
core.
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Conclusions
☼ We inspected the semi-empirical model with the phonon

dispersion of several classical wide-bandgap
semiconductor materials. It indicates that due to the broad
phonon MFP distributions, there were deviations between
the model predicted theramal resistance and those of
Dispersion MC.

☼ The deviations could be characterized by the average
Knudson number Knt ,Knw , which refer to cross-plane and
heat-source ballistic effects, respectively. The model was
further revised to correct the deviations based on the
analyses.

☼ Dimensionless temperature distributions by Dispersion
Monte Carlo and FEM with effective thermal conductivity
were compared, the results indicated that our model gave
a highly efficient way to evaluate the thermal spreading
and ballistic effects.
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Thank You!
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