# RF Operation of AIN/AI<sub>0.25</sub>Ga<sub>0.75</sub> / AIN HEMTs with $f_T/f_{max}$ of 67/166 GHz

Eungkyun Kim<sup>1</sup>, Jashan Singhal<sup>1\*</sup>, Austin Hickman<sup>1</sup>, Lei Li<sup>1</sup>, Reet Chaudhuri<sup>1</sup>, Yongjin Cho<sup>1</sup>, James C. M. Hwang<sup>2</sup>, Debdeep Jena<sup>1,2,3</sup>, Huili Grace Xing<sup>1,2,3</sup>

<sup>1</sup>School of Electrical and Computer Engineering, Cornell University, <sup>2</sup>Department of Materials Science and Engineering, Cornell University, <sup>3</sup>Kavli Institute at Cornell for Nanoscale Science, Cornell University

#### 2023/11/17

#### Applied Physics Express (IF = 2.3)

(日)



- 2 T-gated Al<sub>0.25</sub>Ga<sub>0.75</sub>N QW HEMT
- 3 Conclusion
- Inspirations

э

## AIGaN: UWBG Semiconductor

An effective approach to enhance RF power module performance is the improve the breakdown voltage because it directly contributes to the power density of the device.

| Property                                                 | Conventional    |                 | WBG             |                   | UWBG                                    |                                         |                  |
|----------------------------------------------------------|-----------------|-----------------|-----------------|-------------------|-----------------------------------------|-----------------------------------------|------------------|
|                                                          | Si              | GaAs            | SiC             | GaN               | Al <sub>0.85</sub> Ga <sub>0.15</sub> N | $\beta$ -Ga <sub>2</sub> O <sub>3</sub> | Diamond          |
| Bandgap, E <sub>G</sub> (eV)                             | 1.12            | 1.43            | 3.26            | 3.42              | 5.61                                    | 4.8                                     | 5.47             |
| Relative dielectric constant, a                          | 11.9            | 13.1            | 10.1            | 9.7               | 8.68                                    | 10                                      | 5.7              |
| Breakdown field, E <sub>C</sub> (MV/cm)                  | 0.3             | 0.4             | 3               | 3.3               | 10.7                                    | 8                                       | 10               |
| Carrier (channel) mobility, $\mu$ (cm <sup>2</sup> /V s) | 1400            | 8500            | 1020            | 1350(2000)        | 45(250)                                 | 200(180)                                | 3800(69)         |
| Carrier saturation velocity, vsat (cm/s)                 | $1 \times 10^7$ | $2 \times 10^7$ | $2 \times 10^7$ | $2.7 \times 10^7$ | $2.28 	imes 10^7$                       | $1.5 	imes 10^7$                        | $0.8 	imes 10^7$ |
| Thermal conductivity, k (W/m K)                          | 150             | 46              | 490             | 130               | 8.5                                     | 11-27                                   | 2400             |
| Normalized JFOM $(v_{sat}E_C)$                           | 1               | 2.7             | 20              | 30                | 81                                      | 40                                      | 27               |
| Normalized LFOM $(q\mu n_s E_C^2)$                       | 1               | 11              | 73              | 170               | 230                                     | 100                                     | 55               |

Figure 1: Material properties and figures of merit for conventional, WBG, and UWBG semiconductors<sup>1</sup>.

AIN/AIGaN has an about twice the bandgap of GaN, and its electron saturation velocity is almost the same as that of GaN.

・ロ・・ 日・ ・ 日・ ・ 日・

<sup>&</sup>lt;sup>1</sup>S. Choi, S. Graham, S. Chowdhury, *et al.*, "A perspective on the electro-thermal co-design of ultra-wide bandgap lateral devices," *Applied Physics Letters*, vol. 119, no. 17, 2021.

AIGaN HEMTs: Next-Gen High-Power RF Device AIGaN HEMT is first designed by Advanced Technology Research and Development Center, Mitsubishi Electric Corporation in 2007.



Figure 2: Concepts and schematic structure of AlGaN HEMTs<sup>2</sup>.

・ロン ・雪 ・ ・ ヨ ・

<sup>&</sup>lt;sup>2</sup>T. Nanjo, A. Imai, Y. Suzuki, *et al.*, "Algan channel hemt with extremely high breakdown voltage," *IEEE transactions on electron devices*, vol. 60, no. 3, pp. 1046–1053, 2013.

#### Limitations of Study on AlGaN HEMTs

JFOM is for the perforamnce of high-speed devices,

$$\mathsf{JFOM} = f_T V_{\mathsf{DS},\mathsf{max}} = \frac{E_{\mathsf{crit}} v_s}{2\pi}$$

- ↓ While maximize the Al content can improve the breakdown voltage for superior RF performance, the low-field mobilities and carrier densities in the AlGaN channel decrease, and make it difficult to make ohmic contacts.
- Although long-channel devices designed for power switching applications are developing rapidly, there are limited reports of their RF performance.

# **RF Performance of Current AlGaN HEMTs**

- Record  $f_T/f_{max}$  of 40/58 GHz is reported for Al<sub>0.75</sub>Ga<sub>0.25</sub> / Al<sub>0.6</sub>Ga<sub>0.4</sub> HEMTs.
- □ Highest power density is 2.7 W/mm<sup>-1</sup> at 10 GHz albeit at a low PAE of 4% for a microchannel Al<sub>0.65</sub>Ga<sub>0.35</sub> / Al<sub>0.4</sub>Ga<sub>0.6</sub> HFET.
- Record  $f_T/f_{max}$  of 454/444 GHz is reported for AIN/GaN/AIGaN HEMTs.
- ☐ High-speed graded-channel AlGaN/GaN HEMTs with PAE > 70% at 30 GHz at 2.1 W/mm.

ъ

## This Work

- □ This study reports a highly scaled T-gated Al<sub>0.25</sub>Ga<sub>0.75</sub>N quantum well channel HEMT (QW HEMT) for improved RF performance.
- □ The devices with simultaneously high  $I_D^{max}$  (> 900 mAmm<sup>-1</sup>) with low  $R_{on} = 6.5 mtext{ mm}$ , high average breakdown field strength (> 2 MVcm<sup>-1</sup>) and record high  $f_T/f_{max} = 67/166 ext{ GHz}$  for AlGaN channel HEMTs.
- The work demonstrates high average breakdown voltage without any field plate technique, which could potentially provide cost advantages for high-voltage RF applications.

ъ

< ロ > < 同 > < 回 > < 回 > < □ > <



#### 2 T-gated Al<sub>0.25</sub>Ga<sub>0.75</sub>N QW HEMT

#### 3 Conclusion

#### Inspirations

э

(日)

# T-gated AIN/AI<sub>0.25</sub>Ga<sub>0.75</sub> / AIN HEMTs

With soldered corner indium contacts to the 2DEG at the top AIN/AIGaN interface, a charge density and electron mobility of  $3.05e13 \text{ cm}^{-2}$  and  $45 \text{ cm}^{2}\text{V}^{-1}\text{s}^{-1}$  were measured, respectively.



Figure 3: (a) Cross-sectional representation of the fully processed AIN/AI<sub>0.25</sub>Ga<sub>0.75</sub>/AIN HEMTs with a T-shaped gate. (b) SEM image of a 70 nm T-shaped gate cross section.

#### **DC Characteristics**



Figure 4: DC characteristics of the AIN/Al<sub>0.25</sub>Ga<sub>0.75</sub>/AIN HEMTs. The linear (a) and log (b) scale transfer characteristics, showing a peak transconductance of 0.11 S/mm and an on/off ratio exceeding 6 orders. (c) Output characteristics demonstrating a maximum drain current of  $0.9 \text{ A}^{-1}$  mm at a gate voltage of 2 V.

(日)

## **Pulsed I-V Characteristics**



Figure 5: (a) Pulsed  $I_D V_D$  measured with a 500 ns pulsed with 0.05% duty cycle at different biasing conditions. Maximum current collapse of 10% and moderate knee walkout were observed. (b) Small signal characteristics of a HEMT with  $L_G = 70$  nm, with an extrapolated  $f_T/f_{max} = 67/166$ GHz at a gate and drain bias of -4 V and 10 V.

< D > < P > < P > < P > < P</pre>

#### **Breakdown Characteristics**

A breakdown voltage of 59 V was measured for a HEMT with a 260 nm gate-drain distance, which corresponds to an average breakdown field exceeding  $2 \text{ MV cm}^{-1}$ .

All measured HEMTs show  $E_{avg} > 1 \text{ MV cm}^{-1}$ .



Figure 6: Breakdown characteristics for three HEMTs with  $L_{GD} = 0.26, 0.37$ , and  $0.46 \,\mu\text{m}$  at a gate bias of  $-10 \,\text{V}$ . (b) Scaling of breakdown voltage as a function of  $L_{GD}$ .

# **RF** Performance



Figure 7: (a) RF power sweep at 10 GHz at  $V_{\text{Dsq}}/V_{\text{GSq}} = 15/-3 \text{ V}$ , showing a peak PAE of 20% and maximum output power density of 2 W mm<sup>-1</sup>. (b) Benchmark comparing  $f_{\text{T}}/f_{\text{max}}$  of AlGaN channel HEMTs reported in the literature with this work. y/x indicates the Al composition in the top barrier/channel layer (Al<sub>y</sub>Ga<sub>1-y</sub>N / Al<sub>x</sub>Ga<sub>1-x</sub>N).



- 2 T-gated Al<sub>0.25</sub>Ga<sub>0.75</sub>N QW HEMT
- 3 Conclusion
- Inspirations

э

#### Conclusion

- ☐ Highly scaled T-gated Al<sub>0.25</sub>Ga<sub>0.75</sub>N quantum well channel HEMTs were demonstrated.
- □ The devices show a maximum drain current over 900 mAmm<sup>-1</sup>, a peak transconductance of 0.11 S mm<sup>-1</sup>, and a record high  $f_T/f_{max} = 67/166$  GHz.
- □ Devices with  $L_{GD} = 270$  nm exhibited an average breakdown field exceeding 2 MVcm<sup>-1</sup> and a maximum output power density of 2 W mm<sup>-1</sup> with a 20% PAE in the X-band.
- This initial set of data suggests that AlGaN channel transistors can achieve a comparable level of gain at high frequencies to GaN channel transistors despite the lower electron mobility.

ъ

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

#### 1 AIGaN Channel HEMTs

T-gated Al<sub>0.25</sub>Ga<sub>0.75</sub>N QW HEMT

3 Conclusion



э

#### Phonon Database Development

If we could build the phonon database of common semiconductors, the thermal simulations of newly developed transistors can be easily conducted.



Figure 8: TDA-predicted temperature distributions of a 22 nm FinFET and multifinger  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> MOSFETs.

. . . . . . .

< A >

# Thank You! 🐱

Eungkyun Kim, et al.

RF Operation of AIN/AI<sub>0.25</sub>Ga<sub>0.75</sub> / AIN HEMTs with f<sub>T</sub> / f<sub>max</sub> of 67 / 166 GHz

3

<ロ> < 回> < 回> < 回> < 回> < 回> <