Continuous electrochemical heat engines

Andrey D. Poletayev, Ian S. McKay, William C. Chueh and Arun Majumdar

Stanford University

June 13, 2018

Energy and Environmental Science

1/16

Outline

1 Background

- Thermoelectric effect
- Abstract

2 Continuous electrochemical heat engine

- Scheme
- Experiments and simulations
- Conclusion

Thermoelectric effect

The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. Seebeck coefficient: S = dV/dT.

Figure 1: A thermoelectric circuit composed of materials of different Seebeck coefficients (p-doped and n-doped semiconductors), configured as a thermoelectric generator.

Thermal-to-electric heat engine

Figure 2: Optimizing ZT through carrier concentration tuning

How to imporve ZT when k and σ are closely coupled?

- Thermoelectric figure of metrit : $ZT = S^2 \sigma T/k$
- $k = k_e + k_p$
- Wiedemann-Franz law: $k_e = L\sigma T$

Abstract

Main challenge

The main challenge in direct heat-to-electricity conversion is to experimentally realize continuous thermodynamic cycles that sidestep the coupling of entropy, heat and charge transport and operate across a broad range of temperatures.

This work

This work leverages the progress in flow batteries and fuel cells to experimentally demonstrate continuous electrochemical heat engines based on two redox-active working fluids separated by ion-selective membranes.

Redox-Flow Battery

Figure 3: The Vandium Redox-Flow Battery.

Convert chemical energy into electric energy.

Analogy

Figure 4: Continuous electrochemical heat engine. Convert heat into electric energy.

Continuous electrochemical heat engine

Figure 5: Continuous electrochemical heat engine. Convert heat into electric energy.

Electrical and thermal irreversibilities

Figure 6: Electrical and thermal irreversibilities in the continuous electrochemical heat engine.

$$\eta = \frac{I\left(\Delta V_{OC} - I\left(R_{C} + R_{H}\right)\right) - I^{2}R_{Lead} - P_{aux}}{IT_{H}\left(\alpha_{1} - \alpha_{2}\right) + Q_{Loss} + \left(1 - \varepsilon_{HX}\right)\dot{m}c_{p}\Delta T}$$

Dependence of cell potentials on temperature.

Figure 7: Open-circuit voltages of electrochemical cells.

 the slope of the line is equivalent to the total thermopower (α₁ - α₂).

•
$$\Delta V_{OC} = (\alpha_1 - \alpha_2) \Delta T.$$

Polarization curve and maximum power

Figure 8: Two electrochemical heat engines developed in this work.

Efficiency and power

Figure 9: Simulations of gas-based continuous electrochemical heat engines. (A) Effiency and power parametrized by the current-vlogate curves. The four curves correspond to a counterflow heat exchanger rated for 2, 5, 10, and 20 W K^{-1} . (B)-(C) Maximum power density and efficiency as a function of $T_{\rm H}$ and $T_{\rm C}$.

Efficiency and power

Figure 10: Simulations of liquid-based continuous electrochemical heat engines. Maximum power density (A) and efficiency at the maximum power point (B) for a heat engine operating between 50 °C and 10 °C as a function of redox-active fluid properties α and k0, with concentrations of active species corresponding to the experimental system. (C) Concentrations of activate species increased to 15M.

Comparison

Table 1: Comparison between solid-state thermoelectrics and continuous electrochemical heat engines developed in this work.

	Solid-state	Electrochemical heat
	thermoelectrics	engines
Mechanism	Temperature dependent	Temperature dependent
	thermoelectric voltage	reaction potential
Parameter	Seeback coefficient:	Thermopower:
	$\alpha = dE/dT$	$\alpha = \Delta S/nF$
Thermal	Conduction	Convection of working
transport		fluids
Floatricol		Ion-conductance and
transport	Conduction	conduction in the
transport		electrodes
Stacking	Will increase heat leaks	Won't increase heat leaks
Efficiency	5% - 15% $\eta_{ m c}$	Over $30\%\eta_c$

Conclusion

- The work demonstrated two electrochemical heat engines operating in very different temperature regimes.
- Based on system modeling, the continuous electrochemical heat engine can scalably reach maximum power point efficiencies well over 30% of η_c under diverse operating conditions.
- By decoupling thermal and electrical entropy generation pathways, the work demonstrated effective energy conversion in regimes heretofore inaccessible to TE, TG, regenerative, or other thermal-fluid heat engines.

Thank You!