Thermosensitive crystallization-boosted liquid thermocells for low-grade harvesting

Boyang Yu et al., Jun Zhou*, Zhonglin Wang*

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology.

September 10, 2020

Science

(日) (四) (E) (E) (E)

1/19

Outline

Background

- Liquid-state thermocells (LTC)
- Efficiency enhancement

2 Thermopower (S_e) enhancement

- Mechanism
- Different cation additives
- Performance

Background

- Liquid-state thermocells (LTC)
- Efficiency enhancement
- - Mechanism
 - Different cation additives
 - Performance

Background

- Liquid-state thermocells (LTC)
- Efficiency enhancement

Thermopower (S_e) enhancement

- Mechanism
- Different cation additives
- Performance

Liquid-state thermocells (LTC)

Figure 1: heat-electricity conversion via the liquid-state thermocell.

Background

- Liquid-state thermocells (LTC)
- Efficiency enhancement

2 Thermopower (S_e) enhancement

- Mechanism
- Different cation additives
- Performance

Ways to enhance conversion efficiency in thermocells

Figure 2: Three main directions.

Background

- Liquid-state thermocells (LTC)
- Efficiency enhancement

2 Thermopower (S_e) enhancement

- Mechanism
- Different cation additives
- Performance

Background

- Liquid-state thermocells (LTC)
- Efficiency enhancement

Thermopower (S_e) enhancement Mechanism

- Different cation additives
- Performance

Thermopower (S_e) enhancement

Figure 3: (A) Enhancing entropy difference of solvation structures between redox couples by introducing specific additive agents. (B) Inducing redox species concentration gradients by introducing thermosensitive acceptors.

Crystallization-inducing enhancement of Se

Figure 4: Schematic of guanidinium cations (Gdm^+) inducing $Fe(CN)_6^{4-}$ crystallization and enhancement of the Seebeck effect in the 0.4 M $K_3Fe(CN)_6/K_4Fe(CN)_6$

Background

- Liquid-state thermocells (LTC)
- Efficiency enhancement

Thermopower (S_e) enhancement

- Mechanism
- Different cation additives
- Performance

Comparisons between different additives

Figure 5: Various additive-induced enhancements of the Seebeck effect in the TC-LTC.

Background

- Liquid-state thermocells (LTC)
- Efficiency enhancement

2 Thermopower (S_e) enhancement

- Mechanism
- Different cation additives
- Performance

Improvement of V_{oc} and ΔC_r

Figure 6: Open-circuit voltage (V_{oc}) and Concentration ratio difference (ΔC_r) with different ΔT and Gdm⁺ concentration.

Thermoelectric performance of the TC-LTC

Figure 7: (B) Maximum power density (C) Effective thermal conductivity (D) Carnot-relative efficiency (E) η_r and S_e for various LTC systems (F) ZT value at different temperatures (T_c controlled at 293 K)

TC-LTC module

Figure 8: (A) TC-LTC module containing 20 units in series (B) Real-time voltage curves (black) of the module with an increase in ΔT . (C) Polarization curve at $\Delta T = 50$ K. (D) to (G) Real applications.

Background

- Liquid-state thermocells (LTC)
- Efficiency enhancement

2 Thermopower (S_e) enhancement

- Mechanism
- Different cation additives
- Performance

- This paper used a thermosensitive crystallization and dissolution process to induce a persistent concentration gradient of redox ions, a highly enhanced Seebeck coefficient (3.73 millivolts per kelvin), and suppressed thermal conductivity in LTCs.
- As a result, the work achieved a high η_r of 11.1% for LTCs near room temperature.