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Overall introduction

Background
Numerically solving phonon BTE is extremely computationally
challenging due to the high dimensionality of such problems,
especially when mode-resolved properties are considered.
Main work
This work demonstrates the use of physics-informed neural
networks (PINNs) to efficiently solve phonon BTE for multiscale
thermal transport problems with the consideration of phonon
dispersion and polarization.
Main method
A PINN framework is devised to predict the phonon energy
distribution by minimizing the residuals of governing equations
and boundary conditions, without the need for any labeled
training data.
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Phonon probability density function
Phonons can be thought of as quantized sound waves, which
dominate the heat conduction process in many
semi-conductors such as silicon :

ε = hν = ~ω , ~ = h/2π

−→p = ~
−→
k
(

p =
h
λ

)
The probability density function is a 6 dimensional function of
position and momentum:

N =

∫
momenta

d3p
∫

positions
d3rf (r,p, t)

Volumetric average:

〈X (r)〉 =
1

(2π)2

∫
X (r,k)f dk
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Phonon BTE

Relaxation time approximation:

∂fω,p
∂t

+ vg · ∇fω,p =
f0,ω,p − fω,p

τω,p

ω: frequency
p: polarization
fω,p: phonon density distribution
f0,ω,p: equilibrium phonon density distribution
vg = ∂ω

∂k : phonon group velocity
τω,p: phonon relaxation time

With different polarization and frequency, phonons will have
different properties. So called solving mode-resolved phonon
BTE is to solve these phonons individually.
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Polarization and dispersion relation
Phonon polarization:
Optical branch (contribute little to thermal transport) + Acoustic
branch ( 1 Longitudinal branch + 2 Tranverse branches)

(a) LA branch (b) TA branch

Figure 1: Germanium phonon dispersion in the [100] direction.
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Dispersion relation of acoustic phonons

• The phonon dispersion relation of silicon in the [100]
direction is used

• Isotropy is assumed
• Only acoustic phonon branches are considered

ω = c1k + c2k2

Group velocity:

|v| =
∂ω

∂k
= c1 + 2c2k

LA branch:
c1 = 9.01× 105 cm s−1, c2 = −2× 10−3 cm s−1

TA branch:
c1 = 5.23× 105 cm s−1, c2 = −2.26× 10−3 cm s−1
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Effective relaxation time

Matthiessen’s rule:

τ−1 = τ−1
impurity + τ−1

U + τ−1
N = τ−1

impurity + τ−1
NU

Table 1: Relaxation time formulas and coefficients
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Energy-based phonon BTE

∂eω,p
∂t

+ vg · ∇eω,p =
eeq
ω,p − eω
τω,p

Where

eω,p = ~ωD(ω,p)[f − f BE (Tref )]

eeq(ω,p,T ) = ~ωD(ω,p)
[
f BE (T )− f BE (Tref )

]
≈ C(ω,p) (T − Tref )

D(ω,p) = k2

2π2vg
,phonon density of states
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Problem statement
Governing equation

R(e(x ,s, k ,p,µ)) = 0 := vg · ∇e − eeq−e
τ = vg · ∇e + eneq

τ = 0

∇ · q = ∇ ·
∑

p
∫ ωmax p

0

∫
4π vgedΩdω = 0,

vg · ∇e = |vg |(cos θ, sin θ cosφ, sin θ sinφ) · (∇xe,∇ye,∇ze)

Boundary conditions

Bi(x ,s, k ,p,e,µ) = 0, x ,s, k ,p ∈ Γb,µ ∈ Rd

Loss function

L (W ,b) =

∥∥∥∥vg · ∇e − eeq − e
τ

∥∥∥∥2

+ ‖∇ · q‖2 +
∑

i

‖Bi‖2
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Boundary conditions

Isothermal boundary:

e (xb,s, k ,p) = eeq (k ,p,Tb) , s · nb > 0

Diffusely reflecting boundary:

e (xb,s, k ,p) =
1
π

∫
s′·nb<0

e
(
xb,s′, k ,p

) ∣∣s′ · nb
∣∣dΩ, s · nb > 0

Periodic boundary:

e
(
xb1 ,s, k ,p

)
− eeq (k ,p,Tb1

)
= e

(
xb2 ,s, k ,p

)
− eeq (k ,p,Tb2

)
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Framework

e = eeq + eneq,eneq = e − eeq

Figure 2: Schematic of PINN framework for solving stationary
mode-resolved phonon BTE.
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Cases for analyses

Table 2: Training and validation losses of numerical experiments
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Computational efficiency

Table 3: Training and testing information

(a) Training time

(b) Testing time
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1D cross-plane phonon transport

Figure 3: (a) Dimensionless temperature profiles of silicon thin films
with different thickness. (b) Effective thermal conductivity normalized
by the bulk thermal conductivity at different film thickness. The filled
circles represent the parameter points used for training, while the
open circles are predicted points not included in training
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2D in-plane phonon transport

Figure 4: (a) Schematic of 2D in-plane phonon transport case. (b)
Distribution of dimensionless x-directional heat flux along the y-axis in
thin films with different thickness. (c) Effective thermal conductivity
normalized by the bulk thermal conductivity at different length scales.
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2D square phonon transport

Figure 5: (b) Non-dimensional temperature profiles along the vertical
centerline (dashed line in (a)) at different length scales. (c-f) Contours
of dimensionless steady-state temperature at different length scales.
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3D cuboid phonon transport

Figure 6: (a) Gaussian temperature distribution is applied to the top
surface, while all the other surfaces are maintained at lower
temperature. (b) Dimensionless steady-state temperature distribution
(c) PINN-predicted dimensionless temperature distributions along the
centerline on the top surface at different length scales.
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3D cuboid phonon transport

Figure 7: (d-h) PINN-predicted contours of dimensionless
steady-state temperature in the central plane (i) solution under
fourier’s law
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Advantages,limitations and perspectives

Advantages
• computationally efficient especially for 3D problems
• can parameterize the solution to phonon BTE with

geometric variations
• data-free training

Limitations
• current only for steady-state phonon BTE
• small temperate difference assumption
• the training cost will increase for complex problems

Perspectives
• employ the LSTM neural network to predict the dynamics
• adopt the distribution function f-based BTE with

space-dependent relaxation time
• adopt CNN for complex geometries
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Thank You!
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