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Overview

Background
In GaN HEMTs, the heat transfer process is dominated by
thermal spreading processes. Moreover, the phonon mean
free paths (MFPs) of GaN are comparable with the channel
layer thickness and the heat spot width, resulting in the
invalidity of Fourier's heat conduction law.

Main content

Dr.Hua investigated the thermal spreading resistance of
GaN HEMTs by phonon Monte Carlo (MC) methods under
gray-media approximation, and developed a semiempirical
thermal resistance model.

In this work, we took the phonon dispersion of GaN into
considersion and compared the differences between the
results of gray mc and dispersion mc. Also, the thermal
resiatance model was further improved.
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GaN HEMTs

Source

GaN HEMTs hold a very small heat source area compared with
the channel layer length and width.
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thickness 1 - 3 um

area with width
~ O(100 nm)

Substrate with thickness ~ O(100pm)

Figure 1: Typical structure of GaN HEMTs.
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Thermal Spreading Resistance

When heat spreads from a small source to a much larger area,
there is a significant thermal spreading resistance, that can
dominate heat transfer processes.
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Figure 2: Arbitrary shape heat source on a flux channel.
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GaN HEMTs
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Figure 4: Schematic for the basic system with multiple periodically
arrayed heat spots.
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Simulation System

Iy m Iy
F————]
X
MQ] t
z
w

Figure 5: Schematic for the basic system in a single period.

The geometry of the system can be characterized by:

wg/w and w/t
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Ballistic Effect Characterization

Two Knudsen numbers, Kn; and Kn,,, were defined to
characterize the strength of ballistic effects,

Average MFP:
o Cuvg, hdw

60n7 CZU b&;ajciuJ
—4.086 x 107" m

b =
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Characteristic Thermal Resistance

1-D thermal resistance for purely diffusive heat conduction:

t
Ripo = T

Characteristic and dimensionless temperature rise:

AT AT R

ATy = QR = Qt/(kyw), 6 = =L = _
0= QRigo=Qt/(kyw). 6= - = go— =g

1-D thermal resistance in ballistic-diffusive regime:
Rig = 02—0R14.0
Total thermal resistance:

R: = 0sR14.0
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© simulation Details
@ Phonon Dispersion and Relaxation Time
@ Energy-based Variance-reduced Monte Carlo
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Phonon Dispersion

 An isotropic sine-shaped phonon dispersion is used.

* Longitudinal and transverse branches are not
differentiated.

wW(K) = Wmax sin (mk/2km)

2p 1/3

Table 1: Phonon dispersion parameters for GaN.

N/V(1x10%8m=3) ky(1x100m=1) a(1x10"1°m) w(1x 10'3rad/s)

2.16 1.09 2.89 3.5
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Relaxation time

Matthiessen’s rule:

71 = +7," = Aw* + BuPTexp(—C/T)

/mpurlty
Thermal conductivity fitting:

2
Z(A,B,C) =

1 m
§ Z/O CUJ ngwdw - kexp
p

hw

OfBE K2 hwe™s

P = hw
Pl T =5y, = N2
T2kg <eT"B — 1)

C(w, p) = hwD(w
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Phonon Dispersion and Relaxation time
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(a) Temperature dependent thermal
conductivity of GaN.

MFP (m)

(b) Thermal conductivity accumu-
lation function.

Figure 6: Model validation.
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Energy-based Variance-reduced Monte Carlo

When considering phonon dispersion, the main difference is
that phonon bundles emitted from phonon baths will have differ-
ent properties, and their properties will be redetermined after
phonon—phonon scattering.

Emitting Sampling

CouV,

p,w Y p,w

Woh—bnd = C dw
Zp fw p,w vawdw

Scattering Sampling

CpwVpw/lpw
Wh_ h = pwipwl P, dw
P e L (CowVpw/Ipw) dw
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e Results and Discussion
@ Temperature Distribution and Thermal resistance
@ Model for the Thermal Resistance
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Dimensionless Temperature Distributions
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(a) Gray mc. (b) Dispersion mc.
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Figure 7: Dimensionless temperature distributions with w/t = 40 and
wy/w = 0.01, Kn; = 2.
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Total Thermal Resistance
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Figure 8: Dimensionless total thermal resistance as a function of w/t.
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Model for Thermal Resistance

Rt Rr  Rig
Rigo Rigo Riado

R ( Re >1
Rig \ Rid.0

Re
Ria.0

Riq
Rigo

: Thermal spreading effect

: Cross-plane ballistic effect

1
r = | P ( fF : Ballistic effect with w, comparable
Ria \ Ria.0

with MFP
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Thermal Spreading Part

Figure 9: Schematic for the basic system.
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Cross-Plane Ballistic Part

BTE + temperature jump boundary conditions,

oT

2f CwTngidw oT

| 7= g
=0 0 3 [F"C,vg,dw 0z
oT
oz (T‘ B TO) /t
which yields,
C,vg lod 2
R1d/R1dO—1+ 2J" Cute, u)—1+7Knt

f Co Vg tdw N 3
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1D Thermal Resiatance
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Figure 10: Dimensionless 1D thermal resiatance.
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e Unfinished and Expected Work
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Unfinished and Expected Work

Analyze the differences between gray mc and dispersion
mc more detailedly.

Investigate the effective thermal conductivity.

Improve the thermal resistance model with the results of
dispersion mc.
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@ shengmc
@ Indroduction
@ Cases

@ Prospective Features

27/42



shengmc

{3 A Python based framework for 2d phonon monte carlo
simulations.

{3 shengmc is based primarily on
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Basic Picture

{3 Every boundary is saved as an object.

{3 At every step, the emitted phonon is judged whether it's
still in the simulation region using ray casting algorithm.

{3 If not, collision detection is conducted by a linear search.

2 / 3| (a): phonon-boundary scatter
LR .
(@) P 3 \\‘\\\ (b): absorption
\ “o(c)

\ (c): phonon-phonon scatter

Figure 11: The basic physical picture of phonon monte carlo
simulations conducted in shengmc.
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Thermal Spreading Resistance

import numpy as np

wg, w = 0.01, 40
heat_length = wg * w

boundary_points = np.array(
[
(o, 01 # 1,
[0, 11 # 2,
[w / 2 - heat_length / 2, 11 # 3,
[w / 2 + heat_length / 2, 11 # 4,
[w, 1] # 5,
[w, 0] # 6,
]
)
boundary_conditions = np.array([2, 3, 4, 3, 2,

X_grids = np.arange (0, w + heat_length/10, heat_length/5)

y_grids = np.linspace (0, 1, 101)

2 3 4 5

1 6

Figure 12: Schematic of boundary settings.
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Run Under Gray-Medium Approximation

shengmc.run.hello_run (
boundary_points,
boundary_conditions,
x_grids,
y_grids,
gray=True,
number_of_ phonons=1le6,
characteristic_length=1e-08,
gray_MFP=4.09e-07,
phonon_distribution_save_name='phonon.npy',
boundary_distribution_save_name='boundary.npy'
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Phonon Dispersion

dispersion_model shengmc.dispersion.Sine (
omega_m=3.5el13, k_m=10.94e9

)

relaxation_model shengmc.dispersion.RelaxationBulk (
A=2.75e-45, B=9.01e-20, C=113.10, T=300

)

GaN_model = shengmc.dispersion.Dispersion (
dispersion_model, relaxation_model

)

mcinfo = GaN_model.cal_mcinfo ()
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Run with Phonon Pispersion

shengmc.run.hello_run(
boundary_points,
boundary_conditions,
x_grids,
y_grids,
gray=False,
number_of_phonons=1le6,
characteristic_length=1e-08,
probability_phonon_phonon_distribution=mc_info[0][0],
probability_phonon_boundary_distribution=mc_info[0][1],
MFP_phonon_phonon_distribution=mc_info[1][0],
MFP_phonon_boundary_distribution=mc_info[1][1],
phonon_distribution_save_name='phonon.npy'
14
boundary_distribution_save_name='boundary.npy'
) ’
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Results of GaN
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Figure 13: Dimensionless temperature distributions with w/t = 40
and wy/w = 0.01, Kn; = 2.
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Square Film

import numpy as np

boundary_points = np.array([[0O, 0], [0, 1], [1, 11, [1, 0O11)
boundary_conditions = np.array([3, 1, 3, 0])

x_grids = np.linspace(0, 1, 21)

y_grids = np.linspace (0, 1, 41)

2 3

1 4

Figure 14: Schematic of boundary settings.
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Results of Silicon

10F T T T T 3
0.8 0O  Dispersion g

08l A Gray ]
0.6 =06 B

>0

>0

A

0.2 10 107% 1007 10°% 107° 107
L (m)

(@ L=1x10"%m (b) Effective thermal conductivity

Figure 15: Dimensionless temperature distribution and effective
thermal conductivity.

36/42



Multiple Heat Sources - (1)
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(a) Schematic of boundary
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distribution when Kn = 0.5.

Figure 16: Boundary settings and dimensionless temperature

distribution.
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Multiple Heat Sources - (2)

2 34 56 78 9

(a) Schematic of boundary settings.
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(b) Dimensionless temperature distribution when Kn = 0.5.

Figure 17: Boundary settings and dimensionless temperature
distribution.
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Executing Time

@ 2.9GHz Intel Core i5 (Macbook Pro 2016)

Table 2: Single-core computing time of 1e5 phonons for square films
with gray-medium approximation and phonon dispersion, respectively.

Lengthnm 17600 3520 1760 352 176 88 352 17.6

Effective Kn 0.01 0.05 0.1 0.5 1 2 5 10

. Gray 8.20 225 147 084 11 067 064 0.62
Times

Dispersion 149.89 30.98 15.89 3.87 3.94 1.63 1.17 0.98
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Prospective Features

Short-Term Work
«° Supplement more detailed documents
«° Reorganize the project as a python library
«® Support internal heat source

Long-Term Work
A Couple electron-phonon interaction
A Couple fourier’s law
A Take interfaces into account
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Figure 18: HeatEnergists Organization.
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