Simulation Details

Results and Discussion

Optimization of Volume-to-Point Heat Conduction Problem Application of entransy theory

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

January 9, 2022

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

- **2** Simulation Details
- **3** Results and Discussion

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Volume-to-Point Heat Conduction Problem Principle of Minimum Entransy Dissipation

2 Simulation Details

3 Results and Discussion

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Introduction ••• Simulation Details

Results and Discussion

Volume-to-Point Heat Conduction Problem

Volume-to-Point Heat Conduction Problem

- Uniformly heat source q_s in the domain.
- Only one low temperature point at boundary *T*₀.

•
$$\int \int \int k \mathrm{d} V = \mathrm{const.}$$

Fig. 1: 2D heat conduction with a uniformly distributed internel heat source.

How to distribute high conductivity material to make the average temperature of the domain lowest?

Introduction ○○● Principle of Minimum Entransy Dissipation Simulation Details

Results and Discussion

Principle of Minimum Entransy Dissipation

Minimum

$$\int k(\nabla T)^2 \mathrm{d} V$$

under the constraint

$$\int k \mathrm{d} V = \text{const.}$$

By Lagrange multiplier, it can be derived that the optimum condition should satisfy

٠

$$(\nabla T)^2 = \text{const}$$

The temperature gradient of the domain should be as uniform as possible!

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

2 Simulation Details

Problem Statement Numerical Scheme Relaxation factor and Grid Independence Study Optimization Algorithm

3 Results and Discussion

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Problem Statement

Problem Statement

Simulation Details

Results and Discussion

(a) The schematic diagram.

(b) Solving domain and mesh discretization.

- 10% heat flux boundary.
- Only the left side is solved.

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Simulation Details

Results and Discussion

Numerical Scheme

Finite Volume Method

- Interior node method.
- Interfacial thermal conductivity harmonic average:

$$\lambda_{\mathsf{ave}} = rac{2\lambda_{\mathsf{high}}\lambda_{\mathsf{low}}}{\lambda_{\mathsf{high}}+\lambda_{\mathsf{low}}}$$

• SOR iteration scheme:

$$T_{P}^{(n)} = T_{P}^{(n-1)} + \alpha \left(\frac{a_{W} T_{W}^{(n)} + a_{S} T_{S}^{(n)} + a_{E} T_{E}^{(n-1)} + a_{N} T_{N}^{(n-1)} + b}{a_{P}} \right) - \alpha \left(T_{P}^{(n-1)} \right)$$

 α is the relaxation factor.

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Simulation Details

300

Results and Discussion

Relaxation factor and Grid Independence Study

Relaxation factor and Grid Independence Study

(a) Computation time with different relaxation factor.

(b) Temperature distributions along the heat outlet plane.

Optimization Algorithm

Optimization Algorithm

Fill point by point

- 1) fill in the domain with substrate.
- 0 determine T distribution by solving energy equation.
- **3** put high k where ∇T is larget.
- 4 return (2) until high k meterial is used up.

Integrative optimization

S take away high k material iteratively, resolve T distribution, find the least effective high k position, refill the high k material to other places.

2 Simulation Details

8 Results and Discussion Results Under Low k_h/k_l

Results Under High k_h/k_l

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Simulation Details

Results and Discussion

Results Under Low k_h/k_l

Grid Size Dependence Analysis

Fig. 2: High k material distributions with $k_h/k_l = 5$, $\phi_r = 0.15$.

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Simulation Details

Results and Discussion

Results Under Low k_h/k_l

Grid Size Dependence Analysis

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Results Under Low k_h/k_l

Simulation Details

Results and Discussion

Results with Different Filling Rates

Fig. 4: High k material distribution with n = 40, $k_h/k_l = 5$.

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Results Under Low k_h/k_l

Simulation Details

Results and Discussion

Fig. 5: High k material filling process with n = 40, $k_h/k_l = 5$, $\phi_r = 0.15$.

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Simulation Details

Results and Discussion

Results Under High k_h/k_I

Grid Size Dependence Analysis

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Simulation Details

Results and Discussion

Results Under High k_h/k_l

Grid Size Dependence Analysis

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Simulation Details

Results and Discussion

Results Under High k_h/k_l

Results with Different Filling Rates

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Results Under High k_h/k_l

Simulation Details

Results and Discussion

Fig. 9: High k material filling process with $n = 40, k_h/k_l = 100, \phi_r = 0.15.$

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering

Introduction 000 <u>Result</u>s Under High k_h/k_l Simulation Details

Results and Discussion

Thank You!

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering