Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources

Xuesong Chen, Slim Boumaiza, Lan Wei

Department of Electrical and Computer Engineering, University of Waterloo

2020/07/01

IEEE TRANSCATIONS ON ELECTRON DEVICES (IF=2.917)

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 1 / 37

A D N A D N A D N A D N

Overview

- Being the result of Joule heating, self-heating is highly bias dependent, *i.e.* dependent on drain voltage and gate voltage.
- Previous thermal studies on self-heating assumed a single heat source located right under the gate, these single heat source approaches can not account for the bias dependence of self-heating. Also, the bias dependence of self-heating in GaN HEMTs has not been studied quantitatively.
- This work proposed two-heat-source model to capture the bias dependence of the heat and temperature distribution in the GaN HEMT channel without resorting to the more resource-intensive electrothermal simulations.

イロト 不得 トイヨト イヨト

2/37

- 2 Two-Heat-Source Model
- 3 Maximum Channel Temperature

4 Conclusion

- Discussions on t_{GaN}
- 6 Perspective

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 3 / 37

Bias Dependence of Self-Heating

(a) Output characteristics of the HEMT.

(b) Channel temperatures with the same power dissipation $P_{\text{diss}} = 8 \text{ W/mm.}$

Figure 1: Bias dependence of self-heating in GaN HEMTs.

Two-Heat-Source Model

- Bias-Dependent Heat Generation
- Two-Heat-Source Model
- Model Validation

3 Maximum Channel Temperature

4 Conclusion

Discussions on t_{GaN}

6 Perspective

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 5/37

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two-Heat-Source Model

- Bias-Dependent Heat Generation
- Two-Heat-Source Model
- Model Validation

3 Maximum Channel Temperature

4 Conclusion

Discussions on t_{GaN}

6 Perspective

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 6 / 37

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Schematic of the HEMT

Figure 2: Schematic of the HEMT under study. The geometries are note drawn to scale.

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 7/37

Two Regions in the channel

Figure 3: Heat density along the HEMT channel at $V_g = 0$ V and $V_d = 1$ V to 5 V.

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 8 / 37

Heat Density in Two Regions

Figure 4: Heat density in region A and region B versus drain voltage V_d .

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 9/37

Two-Heat-Source Model

- Bias-Dependent Heat Generation
- Two-Heat-Source Model
- Model Validation

3 Maximum Channel Temperature

4 Conclusion

Discussions on t_{GaN}

6 Perspective

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 10/37

Two-Heat-Source Model

$$\begin{cases} P_1 = I_d V_d, & P_2 = 0, & \text{for} \quad V_d \le V_{dsat} \\ P_1 = I_d V_{dsat}, & P_2 = I_d \left(V_d - V_{dsat} \right), & \text{for} \quad V_d > V_{dsat} \end{cases}$$

- \bigcirc P_1 corresponds to the uniform heat generated in the low-field regions. In the linear regime ($V_d \leq V_{dsat}$), all the generated heat is dissipated through HS1.
- ♦ P_2 is associated with the small high-field region around the drain-side gate edge when the device is in saturation. In the saturation regime ($V_d > V_{dsat}$), the heat dissipated by HS1 is capped to its maximum value, whereas HS2 dissipates the additional heat due to the increased V_d .

$$\circlearrowright L_{\rm HS1} = L_{\rm finger}, L_{\rm HS2} = 0.16\,\mu{\rm m}$$

イロト 不得 トイヨト イヨト

Heat Dissipation for the Two Heat Sources

Figure 5: Heat dissipation for the two heat sources predicted by THS model for four different biases that give the same total power dissipation $P_{diss} = 7.5 \text{ W/mm}$.

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 12 / 37

A (10) A (10)

2 Two-Heat-Source Model

- Bias-Dependent Heat Generation
- Two-Heat-Source Model
- Model Validation

3 Maximum Channel Temperature

4 Conclusion

Discussions on t_{GaN}

6 Perspective

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 13/37

Bias-Dependent Channel Temperature

Figure 6: Temperature profiles across the channel at $P_{diss} = 7.5 \text{ W/mm}$ and the four different biases. The symbols are acquired from electrothermal TCAD simulations; the lines generated from thermal-only FEM simulation based on THS model.

4 **A b b b b b b**

Bias-Dependent Channel Temperature

Figure 7: Device 2 with longer drain access region $L_{sg} = 0.95 \,\mu\text{m}, L_{g} = 0.1 \,\mu\text{m}, L_{gd} = 1.45 \,\mu\text{m}.$

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 15 / 37

< ロ > < 同 > < 回 > < 回 >

Bias-Dependent Channel Temperature

Figure 8: Device 3 with longer gate length $L_{sg} = 0.6 \,\mu\text{m}, L_g = 0.8 \,\mu\text{m}, L_{gd} = 0.6 \,\mu\text{m}.$

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 16 / 37

- 2 Two-Heat-Source Model
- 3 Maximum Channel Temperature
- 4 Conclusion
- Discussions on t_{GaN}
- 6 Perspective

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 17/37

Thermal Resistance Model

Two-heat-source model

$$\begin{cases} P_1 = I_d V_d, & P_2 = 0, & \text{for} & V_d \le V_{dsat} \\ P_1 = I_d V_{dsat}, & P_2 = I_d (V_d - V_{dsat}), & \text{for} & V_d > V_{dsat} \end{cases}$$

$$T_{\text{max}} = T_0 + (R_{\text{sub}} + R_1)P_1 + (R_{\text{sub}} + R_2)P_2$$

- \bigcirc R_{sub} denotes Thermal boundary resistance.
- \bigcirc R_1 denotes unidimensional thermal resistance by HS1 in the linear regime.
- \bigcirc R_2 denotes thermal spreading resistance by HS2 in the saturation regime.

Bias-Dependent Maximum Temperature

Figure 9: Maximum channel temperature T_{max} versus total power dissipation P_{diss} of the GaN HEMT at different biases extracted from electrothermal TCAD simulations (symbols) and reproduced using the proposed analytical model.

Differential Thermal Resistance

Figure 10: Differential thermal resistance R_{diff} , computed as the derivative of T_{max} versus P_{diss} . The linear-regime value $R_{\text{diff, lin}}$ and saturation-regime value $R_{\text{diff, sat}}$ are extracted to be 7.3 and 14 K mm/W, respectively.

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 20 / 37

Table 1: Themal spreading resistance R_2 from electrothermal simulations for various device geometries (in μ m).

L_g	R_2	L_{sg}	R_2	L_{gd}	R_2	t _{GaN}	R_2
0.075	9.9	0.45	11.0	0.45	11.5	0.5	8.5
0.1	10.0	0.95	10.0	0.95	10.0	1.0	10.0
0.8	10.7	1.45	9.4	1.45	9.0	2.0	13.3

Background

- 2 Two-Heat-Source Model
 - Maximum Channel Temperature

4 Conclusion

- Discussions on t_{GaN}
- 6 Perspective

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 22 / 37

Conclusion

- The article presented a new approach to model self-heating in GaN HEMTs using two heat sources.
- The proposed two-heat-source thermal model accurately captures the bias dependence of the self-heating phenomenon in GaN HEMTs.
- The proposed model also leads to a simple and accurate expression for the maximum channel temperature.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Background

- 2 Two-Heat-Source Model
- 3 Maximum Channel Temperature

4 Conclusion

Discussions on t_{GaN}

6 Perspective

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 24 / 37

Discussions on t_{GaN}

Figure 11: Schematic of the modeled device, $q = 1 \times 10^{10} \text{ W/m}^2$.

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 25 / 37

Temperature Feild

Figure 12: Top view temperature field of the simulated device, $h_c = 0.5 \times 10^8 \text{ W/m}^2 \text{ K}, t_{\text{GaN}} = 1 \,\mu\text{m}, t_{\text{sub}} = 100 \,\mu\text{m}.$

Xuesong Chen et al.

Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources

< ロ > < 同 > < 回 > < 回 >

26/37

Effects of h_c on t_{GaN}

Figure 13: The maximum temperature of the device as a function of t_{GaN} , $h_c = 6.5 \times 10^5 \,\text{W/m}^2 \,\text{K}$.

Xuesong Chen et al.

Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 2

27 / 37

Effects of h_c on t_{GaN}

Figure 14: The maximum temperature of the device as a function of t_{GaN} , $h_c = 0.5 \times 10^8 \text{ W/m}^2 \text{ K}$.

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 28 / 37

Effects of h_c on t_{GaN}

Figure 15: The maximum temperature of the device as a function of t_{GaN} , isothermal thermal contact.

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 29 / 37

Effects of t_{sub} on T_{max}

Figure 16: The maximum temperature of the device as a function of t_{sub} , $t_{GaN} = 1 \,\mu m$.

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 30 / 37

Effects of t_{sub} on T_{max}

Figure 17: Top view temperature field of the simulated device, $t_{GaN} = 1 \,\mu m, h_c = 6.5 \times 10^5 \,W/m^2 \,K.$

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 31 / 37

Some Insights

When $k_{buffer} > k_{substrate}$:

- \circlearrowright When h_c is low and t_{sub} is not too low, increasing t_{GaN} will enhance thermal spreading in GaN layer and reduce the juncture temperature (real situation).
- \bigcirc When h_c is high (limit to isothermal condition) and t_{sub} is low, decreasing t_{GaN} will lead the heat in GaN layer directly flow to the heat sink and reduce the juncture temperature (unreal).
- \circlearrowright When h_c is low, properly increasing t_{sub} will enhance thermal spreading in the device and reduce the juncture temperature (non consider envelope).
- The above conclusions only consider two layers and don't include the influences of ballistic effects.

Background

- 2 Two-Heat-Source Model
- 3 Maximum Channel Temperature

4 Conclusion

Discussions on t_{GaN}

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 33 / 37

Thermal Resistance with Bias Dependence and Phonon Transport

$$\frac{R}{R_{1-D_{-}0}} = \frac{R_{F}}{R_{1-D_{-}0}} \left(1 + \frac{2}{3}Kn_{t}\right) \left(1 + A_{w}Kn_{w}\right)$$

Xuesong Chen et al.

Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources

Finished Work

TCAD+FEM Simulation Process

Perspective Roadmap

Thank You!

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 37 / 37

э