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Overview

0

0

Being the result of Joule heating, self-heating is highly bias
dependent, i.e. dependent on drain voltage and gate
voltage.

Previous thermal studies on self-heating assumed a single
heat source located right under the gate, these single heat
source approaches can not account for the bias
dependence of self-heating. Also, the bias dependence of
self-heating in GaN HEMTs has not been studied
quantitatively.

This work proposed two-heat-source model to capture the
bias dependence of the heat and temperature distribution
in the GaN HEMT channel without resorting to the more
resource-intensive electrothermal simulations.
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a Background
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Bias Dependence of Self-Heating
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Figure 1: Bias dependence of self-heating in GaN HEMTs.
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9 Two-Heat-Source Model
@ Bias-Dependent Heat Generation
@ Two-Heat-Source Model
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9 Two-Heat-Source Model
@ Bias-Dependent Heat Generation
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Schematic of the HEMT
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Figure 2: Schematic of the HEMT under study. The geometries are
note drawn to scale.
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Two Regions in the channel
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Figure 3: Heat density along the HEMT channel at V;, =0V and
Vg=1Vto5V.
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Heat Density in Two Regions
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Symbols: heat density extracted from
TCAD electro-thermal simulation
Lines: heat density calculated using the
two-heat-source model given by (1)

E) E]
o =
= g
£} 130
3 =
) )
Z 2t 120 %
=] =
o3 3
A a
g1t 110 8
T 5
0f & ; | | f 10
0 2 4 6 8 10
Va (V)

Figure 4: Heat density in region A and region B versus drain voltage
Vy.
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9 Two-Heat-Source Model

@ Two-Heat-Source Model
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Two-Heat-Source Model

Py =14Vq, P>=0, for  Vy < Visat
Py = IgVysar, Po =13 (Vg — Vgsar), for Vg > Vgea

{3 Py corresponds to the uniform heat generated in the
low-field regions. In the linear regime (Vy < Vjsat), all the
generated heat is dissipated through HS1.

{3 P, is associated with the small high-field region around the
drain-side gate edge when the device is in saturation. In
the saturation regime (Vy > Vysat), the heat dissipated by
HS1 is capped to its maximum value, whereas HS2
dissipates the additional heat due to the increased V.

C‘ Lust = Lfingera Lysz = 0.16 um
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Heat Dissipation for the Two Heat Sources
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Figure 5: Heat dissipation for the two heat sources predicted by THS
model for four different biases that give the same total power
dissipation Pgiss = 7.5 W/mm.
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9 Two-Heat-Source Model

@ Model Validation
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Bias-Dependent Channel Temperature
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Figure 6: Temperature profiles across the channel at
Paiss = 7.5W/mm and the four different biases. The symbols are

acquired from electrothermal TCAD simulations; the lines generated
from thermal-only FEM simulation based on THS model.

Xuesong Chen et al.

340 P ﬁ_Lm =0.16um q
i . Heat Source2 i
0.0 0.5 1.0 L5 2.0 25
X (pm)

Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 14/37



Bias-Dependent Channel Temperature
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Figure 7: Device 2 with longer drain access region
Lsg = 0.95um,Lg = 0.1 um,Lgg = 1.45um.
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Bias-Dependent Channel Temperature
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Figure 8: Device 3 with longer gate length
Lsg - 0.6 um,Lg - 0.8 um,Lgd - 0.6 IJ.m.
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© Maximum Channel Temperature
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Thermal Resistance Model

Two-heat-source model

Py =13Vy, P>=0, for Vg < Visat
Py = IgVysat, P2 =13 (Vg — Vgsar), for Vg > Vgea

Tmax = To + (Rsuo + R1)P1 + (Rsuo + R2) P2

{3 Rgy, denotes Thermal boundary resistance.

{3 Ry denotes unidimensional thermal resistance by HS1 in
the linear regime.

{3} R, denotes thermal spreading resistance by HS2 in the
saturation regime.
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Bias-Dependent Maximum Temperature
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Figure 9: Maximum channel temperature Tyax versus total power
dissipation Pgiss 0of the GaN HEMT at different biases extracted from
electrothermal TCAD simulations (symbols) and reproduced using
the proposed analytical model.
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Differential Thermal Resistance
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Figure 10: Differential thermal resistance Rgj;, computed as the
derivative of Tax versus Pyss. The linear-regime value Ry, in and
saturation-regime value Ry, sar are extracted to be 7.3 and

14 Kmm/W, respectively.
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Thermal Resistance Analysis

Table 1: Themal spreading resistance R, from electrothermal

simulations for various device geometries (in um).

L, R, Ly R, Ly R, IGaN R,
0.075 | 9.9 0.45 11.0 0.45 11.5 0.5 8.5
0.1 10.0 0.95 10.0 0.95 10.0 1.0 10.0
0.8 10.7 1.45 9.4 1.45 9.0 2.0 13.3
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e Conclusion

Xuesong Chen et al. Modeling Bias Dependence of Self-Heating in GaN HEMTs Using Two Heat Sources 22/37



Conclusion

{3 The article presented a new approach to model
self-heating in GaN HEMTSs using two heat sources.

{3 The proposed two-heat-source thermal model accurately
captures the bias dependence of the self-heating
phenomenon in GaN HEMTs.

{3 The proposed model also leads to a simple and accurate
expression for the maximum channel temperature.
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@ Discussions on tgay
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Discussions on fgan
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Figure 11: Schematic of the modeled device, g = 1 x 10" W/m?2.
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Temperature Feild
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Figure 12: Top view temperature field of the simulated device,
he = 0.5 x 108 W/m?K, tgan = 1 um, tsy = 100 pm.
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Effects of h; on fgan
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Figure 13: The maximum temperature of the device as a function of
fgan, he = 6.5 x 10°W/m2 K.
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Effects of h; on fgan
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Figure 14: The maximum temperature of the device as a function of
lcaN, hc =0.5x 108 W/m2 K.
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Effects of h; on fgan
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Figure 15: The maximum temperature of the device as a function of
lcan, isothermal thermal contact.
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Effects of tyup 0N Trnax

2000 : : - -
—B— h. = 6.5 x 10° W/M?K
1500 | -0~ h.=0.5x 108 W/M?K |
A Isothermal
=
% 1000 |
g
&
500 r
0 1 L L L L
0 50 100 150 200
tsub (pm)

Figure 16: The maximum temperature of the device as a function of
fsub, lgan = 1 pHm.
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Effects of lsup ON Tmax
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Figure 17: Top view temperature field of the simulated device,
tgan = 1pm, he = 6.5 x 105 W/m2K.
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Some Insights

When Koutter > Ksubstrate -

{3 When he is low and ty, is not too low, increasing tgan Will
enhance thermal spreading in GaN layer and reduce the
juncture temperature (real situation).

{3 When h, is high (limit to isothermal condition) and i, is
low, decreasing fgan Will lead the heat in GaN layer directly
flow to the heat sink and reduce the juncture temperature
(unreal).

{3 When h, is low, properly increasing t, will enhance
thermal spreading in the device and reduce the juncture
temperature (non consider envelope).

{3 The above conclusions only consider two layers and don’t
include the influences of ballistic effects.
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@ Perspective
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Thermal Resistance with Bias Dependence and
Phonon Transport
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Finished Work

TCAD+FEM Simulation Process
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Perspective Roadmap
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Thank You!
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