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Overview

☼ Self-heating in GaN HEMTs can cause reliability issues
and degrade the device performance. Being the result of
Joule heating, self-heating is highly bias dependent.

☼ Previous studies on self-heating are mainly based on
Fourier’s law of heat conduction, the non-Fourier effects
have not been studied quantitatively.

☼ We reexamined the bias dependence of self-heating in
GaN HEMTs by TCAD and hybrid Monte Carlo-diffusion
simulations, and developed a semi-empirical thermal
resistance model which can take the bias dependence and
phonon transport into account.
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Thermal Issues in GaN HEMTs

Figure 1: IDS − VDS of GaN/Dia
and GaN/Si HEMTs 3.

Figure 2: Mean time to failure
(MTTF) for TriQuint GaN PAs 4.

The significant overheating within the devices largely degrades
the electrical performance and shortens the device lifetime.

1K. Ranjan, S. Arulkumaran, G. Ng, et al., “Investigation of self-heating effect on dc and rf performances in
algan/gan hemts on cvd-diamond,” IEEE Journal of the Electron Devices Society, vol. 7, pp. 1264–1269, 2019.

2M. Rosker, C. Bozada, H. Dietrich, et al., “The darpa wide band gap semiconductors for rf applications
(wbgs-rf) program: Phase ii results,” CS ManTech, vol. 1, pp. 1–4, 2009.
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Bias Dependence of Self-Heating

Figure 3: Bias dependent results for channel conditions with
VGS = −1 V and VGS = 2.5 V, respectively3, Pdiss = 250 mW.

3B. Chatterjee, C. Dundar, T. E. Beechem, et al., “Nanoscale electro-thermal interactions in algan/gan high
electron mobility transistors,” Journal of Applied Physics, vol. 127, no. 4, p. 044 502, 2020.
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Two Heat Source Model4

Figure 4: Temperature profiles across the channel at
Pdiss = 7.5 W/mm and the four different biases.

4X. Chen, S. Boumaiza, and L. Wei, “Modeling bias dependence of self-heating in gan hemts using two
heat sources,” IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3082–3087, 2020.
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Phonon Ballistic Transport

Figure 5: Dimensionless total thermal resistance as a function of w/t ,
with wg/w = 0.005 and 0.015.
Phonon Ballistic Transport can significantly increase the
thermal resistance.

5Y.-C. Hua, H.-L. Li, and B.-Y. Cao, “Thermal spreading resistance in ballistic-diffusive regime for gan
hemts,” IEEE Transactions on Electron Devices, vol. 66, no. 8, pp. 3296–3301, 2019.
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This Work

Motivation
 Reexamine the self-heating effects in GaN HEMTs with the

consideraton of phonon ballistic transport.

This Work
± TCAD and hybrid Monte Carlo-diffusion simulations were

conducted to study the self-heating effects in GaN HEMTs,
the two-heat-source model was improved to take the
ballistic effects into consideration.
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Device Structure6

Figure 6: Schematic of GaN HEMT. The geometries are not drawn to
scale.

6X. Chen, S. Boumaiza, and L. Wei, “Self-heating and equivalent channel temperature in short gate length
gan hemts,” IEEE transactions on electron devices, vol. 66, no. 9, pp. 3748–3755, 2019.
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Output Characteristics
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Figure 7: Output characteristics of the HEMT under Vg from −2 V to
2 V with an interval of 1 V.
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Bias-Dependent Heat Generation
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Figure 8: The total power dissipation level for the two bias condions,
P = 7.5 W/mm.
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Phonon Monte Carlo Simulation

Figure 9: Schematic diagram of the simulated GaN HEMT, the Juole
heating profile calculated by TCAD is imported to MC simulations as
heat source.
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Phonon Dispersion

• An isotropic sine-shaped phonon dispersion (Born-von
Karman dispersion) is used.

• Longitudinal and transverse branches are not
differentiated.

ω(k) = ωmax sin (πk/2km)

km =

(
6π2N

V

)1/3

, a = π/km, ωm = 2v0g/a
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Relaxation time

Matthiessen’s rule:

τ−1 = τ−1
impurity + τ−1

U = Aω4 + Bω2T exp(−C/T )

Thermal conductivity fitting:

L (A,B,C) =
∑∥∥∥∥∥1

3

∑
p

∫ ωm

0
Cωvω lωdω − kexp

∥∥∥∥∥
2

C(ω,p) = ℏωD(ω,p)
∂f BE

∂T
= ℏω

κ2

2π2
∣∣vg

∣∣ ℏωe
ℏω
TkB

T 2kB
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e
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TkB − 1

)2
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Phonon Dispersion and Relaxation time

Table 1: Fitted phonon dispersion and scattering parameters7.

Parameter (Unit) GaN SiC

k0 (1 × 109 m−1) 10.94 8.94

ωm (1 × 1013 rad/s) 3.50 7.12

aD (Å) 2.87 3.51

A (1 × 10−45 s3) 5.26 1.00

B (1 × 10−19 s/K) 1.10 0.596

C (K) 200 235.0

7Q. Hao, H. Zhao, and Y. Xiao, “A hybrid simulation technique for electrothermal studies of two-dimensional
gan-on-sic high electron mobility transistors,” Journal of Applied Physics, vol. 121, no. 20, p. 204 501, 2017.
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Phonon Dispersion and Relaxation time

Figure 10: Thermal conductivity from model calculations (line), and
from experiments (symbols)8.

8Q. Hao, H. Zhao, Y. Xiao, et al., “Multi-length scale thermal simulations of gan-on-sic high electron mobility
transistors,” in Multiscale Thermal Transport in Energy Systems, Nova Science Publishers, 2016.
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Interface Phonon Transport

Based on diffuse mismatch model (DMM), phonons are
diffusively transmitted or reflected by an interface.

The frequency-dependent phonon transmissivity from material
1 to 2 is given as

τ12(ω) =

∑
p v2,g,p(ω)D2,p(ω)∑

p v1,g,p(ω)D1,p(ω) +
∑

p v2,g,p(ω)D2,p(ω)

The thermal boundary resistance (TBR) can be further
calculated by

R =
4∫

T12C1(ω)v1(ω)dω
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Validation of MC Code

Table 2: TBR of GaN/SiC predicted by DMM and MC simulations
(Unit: m2K/GW)

DMM
Heat flux heating Temperature difference heating

GaN emission SiC emission GaN emission SiC emission

23.20 19.23 20.30 19.06 18.16
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MC Simulations at Different Bias
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Figure 11: Dimensionless temperature distribution predicted by MC
simulations.
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Remaining Work

☼ Figure out the simulation size dependence of the results,
ensuring the validity of the simulation.

☼ Develop automated and parametric analysis process.
☼ Carry out TCAD simulations with different gate lengths.
☼ Investigate the hybrid algorithm with phonon dispersion

considered, e.g. the selection of the size of different
sections.

☼ Current work and previous work are all based on small
temperature difference approximation, thus the thermal
resistance model is power independent. detailed analysis
and necessary model corrections have to be done in the
future, e.g. importing f (P) to the model.
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Python-based 2D Ray-tracing Phonon MC Code

.
.git
docs
examples
shengmc

init .py
dispersion.py
geometry.py
mc.py
phonon.py
run.py
statistics.py

setup.py

Figure 12: Directory tree of shengmc.
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shengmc

Figure 13: Schematic diagram of shengmc.
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Inclined Interface

Figure 14: Simulation of a tangram like system.
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Multiple Interfaces With Phonon Dispersion

Figure 15: Simulation of a grid like system.
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Non-uniform Heat Source

Figure 16: Simulation of a system with non-uniform heat source.

Yang Shen Bias Dependence of Non-Fourier Heat Conduction in GaN HEMTs 29 / 32



Internal Hole

Figure 17: Simulation of a system with an internal hole.
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Prospective Features

 Support the cross-scale module for device level
simulations.
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Thank You!
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