Device-level Transient Cooling of β-Ga₂O₃ MOSFETs

Samuel H. Kim¹, James Spencer Lundh², Daniel Shoemaker², Bikramjit Chatterjee¹, Kelson D. Chabak³, Andrew J. Green³, Kyle Liddy³, Samuel Graham⁴, Sukwon Choi²*

¹Georgia Institute of Technology, ²The Pennsylvania State University, ³Air Force Research Laboratory, ⁴University of Maryland,

2022/06/03

2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)

2 Device Description

- Experimental and Modeling Details
- 4 Results and Discussion

5 Conclusion

WBG Semiconductor Device Applications

Power device operation: By switching a power device on periodically, current pulses are induced that allow for control circuits to be regulated.

RF device operation: An RF device or amplifier works at a constant DC bias, takes the low-power RF signal and amplify or convert it to a high-power signal.

< ∃ >

Ultra-Wide Bandgap (UWBG) Semiconductor β-Ga₂O₃

Table 1: Electronic and thermal properties of semiconductors used to construct radio frequency (RF) and power switching devices.

Material Property	Si	4H-SiC	GaN	β-Ga2O3
Bandgap (eV)	1.1	3.25	3.4	4.6-4.9
Breakdown field (MV/cm)	0.3	3	3.3	8
Normalized BFOM	1	320	860	1100 - 3250
Normalized JFOM	1	8.2	22.9	37.5
Density (g/m ³)	2.33	3.21	6.15	6.44
Specific heat (J/kg-K)	710	670	490	490
Thermal diffusivity (m ² /s)	9.1e-5	2.3e-4	4.3e-5	4.1e-6
Thermal conductivity at 300 K (W/m-K)	135	490	130	26 [010] 13 [001] 9 [100]

Device-level Transient Cooling of β-Ga₂O₃ MOSFETs

・ 同 ト ・ ヨ ト ・ ヨ ト

Transient Thermal Response of Power Device

Figure 1: Schematic of heat transport path of different cooling schemes (a) bottom side cooling; (b) top side cooling.

Device thermal time constant (τ): the rise time for a device to reach \sim 63% of its steady-state temperature in response to a power step input.

$$au \propto \mathbf{1}/lpha =
ho \mathbf{c}_{\mathbf{p}}/\mathbf{k}$$

β-Ga₂O₃ Power Switching Device

Table 2: Thermal diffusivity of different semiconductor materials.

Material Property	Si	4H-SiC	GaN	β -Ga ₂ O ₃
lpha (m/s)	9.1e – 5	2.3e – 4	4.3e – 5	4.1e – 6

The heat diffusion length in β -Ga₂O₃ is limited under short transient thermal loading.

Therefore, device-level thermal management solutions established for GaN devices may not be applicable to β -Ga₂O₃ devices, especially under high frequency operating conditions that involve switching power losses.

- 3 Experimental and Modeling Details
- 4 Results and Discussion

5 Conclusion

<ロト < 同ト < ヨト < ヨト

β -Ga₂O₃ MOSFET

Figure 2: Schematic of a homoepitaxial β -Ga₂O₃ MOSFET.

A Si-doped β -Ga₂O₃ channel layer was grown on a Fe-doped (010)-oriented β -Ga₂O₃ commercial substrate using metal organic vapor phase epitaxy (MOVPE).

The channel length is $2.5 \,\mu$ m, where the gate length is $0.5 \,\mu$ m and the gate-drain length is $2 \,\mu$ m. The gate width is $100 \,\mu$ m.

Cooling Schemes

Figure 3: (b) bottom-side cooling; (c) double-side cooling, depositing a polycrystalline diamond heat spreader ouver the β -Ga₂O₃ channel layer.

(日)

GaN-on-Si HEMT

Figure 4: (a) Optical image of tested AlGaN/GaN HEMT; (b) Cross-sectional view of the HEMT.

The GaN HEMT has a 4.4 μ m GaN buffer layer, a gate length of 2 μ m, a gate width of 100 μ m, a gate-to-source spacing of 2 μ m, anda gate-to-drain spacing of 15 μ m.

- Experimental and Modeling Details
- 4 Results and Discussion

5 Conclusion

<ロト < 同ト < ヨト < ヨト

Transient Raman Thermometry

Figure 5: (a) Experimental setup (b) The synchronized pulsing scheme used to capture the transient thermal response.

A temporal resolution of 15 ns was achieved in this study. The β -Ga₂O₃ MOSFET and GaN HEMT were operated under a fully open channel condition.

< ロ > < 同 > < 回 > < 回 > < 回 > <

1 Introduction

- 2 Device Description
- Experimental and Modeling Details
- 4 Results and Discussion

5 Conclusion

(日)

Modeling and Validation

Figure 6: (a) Experimental data along with simulated results for the β -Ga₂O₃ MOSFET and GaN-on-Si HEMT that were operated under 1 W/mm and 1.6 W/mm, repectively. (b) Normalized temperature rise with respect to their steady-state temperature rise.

< A >

3 B

Modeling of Different Schemes

Figure 7: The transient channel temperature rise under a power density of 4 W/mm for a homoepitaxial β -Ga₂O₃ MOSFET with different cooling schemes and a GaN-on-Si HEMT.

A top-side heat spreader effectively reduces the temperature rise during short transient conditions (*e.g.*, $\Delta t < 10^{-5}$ s)

1 Introduction

- 2 Device Description
- 3 Experimental and Modeling Details
- 4 Results and Discussion

(日)

Conclusion

- A Replacing the substrate with polycrystalline diamond could reduce the steady-state temperature rise by 65% compared to that for a homoepitaxial β-Ga₂O₃ MOSFET.
- △ However, for high frequency power switching applications beyond the $\sim 10^2$ kHz range, bottom-side cooling does not improve the transient thermal response of the device.
- Δ The use of a β-Ga₂O₃ composite substrate (bottom-side cooling) should be augmented by a diamond passivation layer (top-side cooling) to effectively cool the device active region under both steady-state and transient operating conditions.

Ultrafast Transient Heat Transport

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 68, NO. 1, JANUARY 202

Analysis of the Ultrafast Transient Heat Transport in Sub 7-nm SOI FinFETs Technology Nodes Using Phonon Hydrodynamic Equation

Houssem Rezgui[®], Faouzi Nasri, Abdessalem Ben Haj Ali, and Amen Allah Guizani

$$\begin{aligned} \frac{\partial T}{\partial t} &+ \tau_R \frac{\partial^2 T}{\partial t^2} - \frac{4}{15} l^2 \frac{\partial (\Delta T)}{\partial t} = \frac{1}{C} \nabla (\kappa \nabla T) + \frac{Q}{C} \\ T &- T_W = -d_W \times l \times \frac{\partial T}{\partial x} \\ d_W &= \frac{R_{\text{TBR}} \times \kappa_{\text{eff}}}{Kn \times L_h} \end{aligned}$$

(日本) (日本) (日本)

Ultrafast Transient Heat Transport

Fig. 7. Surface temperature distribution in the nanodevice at t = 15 ps for (a) p = 0.1 and (b) p = 0.6.

Fig. 8. 2-D Temperature maps from cross-sectional view at t = 20 ps for (a) p = 0.1 and (b) p = 0.4.

イロト イポト イヨト イヨト

э

Thank You! 🐱

э.

<ロ> <同> <同> < 同> < 同> < □> < □> <