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Thermal Issues in GaN HEMTs

Figure 1: IDS − VDS of GaN/Dia
and GaN/Si HEMTs 1.

Figure 2: Mean time to failure
(MTTF) for TriQuint GaN PAs 2.

The significant overheating within the device can degrade the
electrical performance and shorten the device lifetime.

1K. Ranjan, S. Arulkumaran, G. Ng, et al., “Investigation of self-heating effect on DC and RF performances
in AlGaN/GaN HEMTs on CVD-diamond,” IEEE Journal of the Electron Devices Society, vol. 7,
pp. 1264–1269, 2019.

2M. Rosker, C. Bozada, H. Dietrich, et al., “The DARPA wide band gap semiconductors for RF applications
(WBGS-RF) program: Phase II results,” CS ManTech, vol. 1, pp. 1–4, 2009.
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Thermal Spreading in GaN HEMTs

Figure 3: Schemation of the cross-section of GaN HEMTs: (a) overall
structure (b) enlarged view in the near-junction region.

The size of the heat generation region is small compared with
the device length and width. Thermal spreading resistance
dominates the heat transport in the near-junction region.
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Phonon Ballistic Transport in the Near-Junction Region
Boundary scattering can lead to a reduced thermal conductivity,
non-local transport when the heat source size comparable with
MFPs can further increase hotspot temperature.

Figure 4: (a)Thermal conductivity versus film thickness or nanowire
diameter. (b) Effective conductivity versus varying heater sizes3.

3G. Chen, “Non-fourier phonon heat conduction at the microscale and nanoscale,” Nature Reviews Physics,
vol. 3, no. 8, pp. 555–569, 2021.
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Phonon Boltzmann Transport Equation

Figure 5: Schematic diagram of the cross section of the GaN HEMT
and the simulated channel temperature4.

In solving phonon BTE in the near-junction region, all previous
works adopt the gray-medium approximation or empirical
isotropic dispersion models.

4Q. Hao, H. Zhao, and Y. Xiao, “A hybrid simulation technique for electrothermal studies of two-dimensional
GaN-on-SiC high electron mobility transistors,” Journal of Applied Physics, vol. 121, no. 20, p. 204 501, 2017.
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Full-Band Phonon BTE

Figure 6: (a) Phonon dispersion and (b) scattering rates in cubic Ge
from ab-initio calculations5.

In theory solving the full-band phonon BTE can give most
accurate temperature predictions but can be time-consuming.

5N. D. Le, B. Davier, N. Izitounene, et al., “Study of phonon transport across si/ge interfaces using full-band
phonon monte carlo simulation,” Journal of Computational Electronics, pp. 1–12, 2022.
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This Work

± First-Principle based full-band phonon Monte Carlo
simulations are conducted to investigate the near-junction
thermal spreading process in GaN HEMTs.

± The reliability of isotropic empirical dispersion model and
gray-medium approximation is examined.
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Phonon Dispersion and Relaxation Time
The third-order anharmonic calculation of wurtzite GaN is
performed with 15 × 15 × 15 q-point grids, generating 3375
discrete q-points in the reciprocal space. Since 4 atoms exist in
a primitive cell, there are 3 acoustic and 9 optical phonon
branches.
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Figure 7: (a)calculated phonon dispersion along high-symmetry
directions. (b) Intrinsic phonon scattring rates.
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Lattice Thermal Conductivities
Isotropic Born-von Karman dispersion:

ω(k) = ωm sin(πk/2km)

τ−1 = τ−1
I + τ−1

U = Aω4 + Bω2T exp(−C/T )
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Figure 8: (a) Calculated thermal conductivity versus temperature for c
axis. (b) Thermal conductivity accumulation functoin.
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Gray Medium Approximation

To well reflect the phonon ballistic effects, the average MFP can
be extracted by fitting the thickness-dependent thermal
conductivities:
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The fitted MFP of the first-principle-based predictions is 300 nm.
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Thermal Spreading Process in GaN HEMTs

Figure 9: Schematic of thermal spreading process in the GaN layer.
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Full-Band Phonon Monte Carlo Simulation
216 irreducible points in 3375 q-points with 12 phonon
branches.

Sample in irreducible points:

Pi =
i∑

j=1

∑
p

Ej(ω,p)/
Nir∑
j=1

∑
p

Ej(ω,p)

Sample in phonon branches:

Pi,pj =

j∑
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)
/

12∑
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Choose the q-point:

Pk ,i,Pj =
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m=1

Ek ,i,Pj/
∑

m
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Interface Scattering
The wave-vector of reflective phonon is randomly and uniformly
selected among the iso-energy states of the incident phonon:

Pk ∝
(
v⃗k · n⃗⊥

)
δ(ω − ωin), v⃗k · n⃗⊥ > 0

∆ω chosen in this work is ωm/100.
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Figure 10: Dimensionless total thermal resistance calculated with
different ∆ω, t = 1µm,wg/w = 0.01,w/t = 40.
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Validation of the Simulation
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(a) Cross-plane heat conduction
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(b) In-plane heat conduction

Figure 11: Effective thermal conductivity varying with characteristic
length in cross-plane heat conduction and in-plane heat conduction.
Other numerical results come from Wu et al.6

6R. Wu, R. Hu, and X. Luo, “First-principle-based full-dispersion monte carlo simulation of the anisotropic
phonon transport in the wurtzite gan thin film,” Journal of Applied Physics, vol. 119, no. 14, p. 145 706, 2016.
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Thermal Spreading Resistance
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(a) t = 3 µm
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(b) t = 0.5 µm

Figure 12: Dimensionless total thermal resistance of GaN as a
function of w/t with wg/w = 0.01.
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Cross-Plane Ballistic Effects

10−1 1 10

t (µm)

0

2

4

6

8

10

R
1
D
/R

1
d

,
0

First-principle

Empirical

Gray

Figure 13: Dimensionless one-dimensional thermal resistance
varying with layer thickness.

Yang Shen First-Principle-based Phonon Monte Carlo Simulation of Thermal Spreading Resistance 21 / 28



Lateral Ballistic Effects
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Figure 14: Thermal resistance ratio rw varying with the heat source
width wg , t = 1 µm.
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Effective Thermal Conductivity Model7,8

The degradation of the effective thermal conductivity is caused
by the suppression of MFPs of phonons,

keff =
1
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) (
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)
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The model is developed using the empirical isotropic phonon
dispersion.

7Y.-C. Hua, H.-L. Li, and B.-Y. Cao, “Thermal spreading resistance in ballistic-diffusive regime for gan
hemts,” IEEE Transactions on Electron Devices, vol. 66, no. 8, pp. 3296–3301, 2019.

8Y. Shen, Y.-C. Hua, H.-L. Li, et al., “Spectral thermal spreading resistance of wide-bandgap semiconductors
in ballistic-diffusive regime,” IEEE Transactions on Electron Devices, vol. 69, no. 6, pp. 3047–3054, 2022.
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Effective Thermal Conductivity Model
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Figure 15: Dimensionless total thermal resistance of GaN as a
function of w/t with wg/w = 0.01.

Due to the similarity of the MFP spectrum and the weak
anisotropy of GaN above room temperature, the model is still
valid for the first-principle-predicted phonon state properties.
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Conclusion

We develop the first-principle-driven phonon tracing Monte
Carlo simulation technique to simulate the thermal spreading
process in GaN HEMTs.

It is found that in predicting the thermal spreading resistance,
± The empirical isotropic model can reflect the influence of

phonon MFP spectrum but overestimate phonon MFPs.
± By choosing the average MFP properly, the gray-medium

approximation can approximate first-principle-based
predictions roughly.

± The effective thermal conductivity model is still valid for the
first-principle-predicted phonon state properties.
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Outlook

Finished Work
± phonon dispersion
± Bias-dependent heat generation

On-going Work
 Hybrid Monte Carlo-diffusion simulation of real

GaN-on-SiC devices with full band phonon state properties
and interface transmissitivities

Perspective Work
± Non-equilibrium between electrons and phonons (EMC)
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Thank You!
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