Influence of Phonon Ballistic Transport on Electrical Performance of GaN HEMTs

Yang Shen

Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University

March 28, 2023

Influence of Phonon Ballistic Transport on Electrical Performance of GaN HEMTs

ъ

< ロ > < 同 > < 回 > < 回 > .

- 2 Methodologies
- 3 Results and Discussion
- 4 Conclusion

э

Non-Fourier Heat Conduction in GaN HEMTs

Figure 1: Comparison of channel temperature between phonon MC simulation and Fourier's law calculation¹².

Phonon ballistic transport can significantly increase the channel temperature.

(日)

¹Q. Hao, H. Zhao, and Y. Xiao, "A hybrid simulation technique for electrothermal studies of two-dimensional GaN-on-SiC high electron mobility transistors," *Journal of Applied Physics*, vol. 121, no. 20, p. 204 501, 2017.

²Q. Hao, H. Zhao, Y. Xiao, et al., "Electrothermal studies of GaN-based high electron mobility transistors with improved thermal designs," International Journal of Heat and Mass Transfer, vol. 116, pp. 496–506, 2018.

Phonon Transport Mechanism

Cross-plane ballistic effect: Phonon MFPs comparable with the thickness of GaN layer

Heat source-related ballistic effect: Phonon MFPs comparable with the width of heat generation area.

Figure 2: (a)Thermal conductivity versus film thickness or nanowire diameter. (b) Effective conductivity versus varying heater sizes³.

³G. Chen, "Non-fourier phonon heat conduction at the microscale and nanoscale," *Nature Reviews Physics*, vol. 3, no. 8, pp. 555–569, 2021.

Bias-Dependent Phonon Transport

Cross-plane ballistic effect caused by phonon-boundary scattering is only controlled by film thickness.

Heat source-related ballistic effect is highly bias-dependent.

Figure 3: Heat source distributions at different biases with $P_{diss} = 5 \text{ W/mm}$, (a) $V_g = 2 \text{ V}$, $V_d = 3.8 \text{ V}$, (b) $V_a = -1 \text{ V}$, $V_d = 6.7 \text{ V}^4$.

⁴Y. Shen, X.-S. Chen, Y.-C. Hua, et al., "Bias dependence of non-fourier heat spreading in gan hemts," *IEEE Transactions on Electron Devices*, vol. 70, no. 2, pp. 409–417, 2022.

Yang Shen

Influence on Electrical Performance

Figure 4: Left: Schematic cross-sectional view of the symetric AlGaN/GaN HEMT, $L_G = 2 \,\mu m$, $L_{GS} = L_{GD} = 3 \,\mu m$. Right: Output characteristics of the AlGaN/GaN HEMT. Test data and simulation show excellent agreement.⁵

Electrothermal simulation is based on Fourier's law with film thermal conductivity.

・ロッ ・ 一 ・ ・ ヨッ

⁵B. Chatterjee, C. Dundar, T. E. Beechem, et al., "Nanoscale electro-thermal interactions in AlGaN/GaN high electron mobility transistors," *Journal of Applied Physics*, vol. 127, no. 4, p. 044 502, 2020.

Influence on Electrical Performance

Figure 5: (a) Schematic of lateral AlGaN/GaN HEMT structures on Si substrates. (b) Comparison between simulation and experiment DC output characteristics of a single finger lateral HEMT⁶.

The excellent agreement is geometry- and bias-independent.

(日)

⁶Y. Zhang, M. Sun, Z. Liu, *et al.*, "Electrothermal simulation and thermal performance study of gan vertical and lateral power transistors," *IEEE transactions on electron devices*, vol. 60, no. 7, pp. 2224–2230, 2013.

This Work

Objective

Try figuring out the influence of phonon ballistic effects on the electrical performance of GaN HEMTs.

Electrothermal TCAD simulation and Phonon Monte Carlo simulation are conducted to investigate self-heating in GaN HEMTs.

・ 日 ・ ・ 雪 ・ ・ 目 ・ ・ 日 ・

2 Methodologies

3 Results and Discussion

4 Conclusion

э

< 回 > < 回 > < 回 >

TCAD Simulation

Figure 6: Left: Schematic of the GaN-on-SiC HEMT for TCAD simulation. Right: Output characteristics of the HEMT from -2V to 2V with an interval of 1 V extracted from TCAD simulations (lines) and experimental values (symbols).

< ロ > < 同 > < 回 > < 回 >

Phonon Monte Carlo Simulation

• An isotropic sine-shaped phonon dispersion (Born-von Karman dispersion) is used for GaN and SiC,

$$\omega(k) = \omega_{\rm m} \sin \left(\frac{\pi k}{2k_{\rm m}} \right)$$

$$k_{\rm m} = \left(\frac{6\pi^2 N}{V} \right)^{1/3}, \ a = \pi/k_{\rm m}, \ \omega_{\rm m} = 2v_{0g}/a$$

· Relaxation time is calculaed using Matthiessen's rule,

$$\tau^{-1} = \tau_{\rm I}^{-1} + \tau_{\rm U}^{-1} = A\omega^4 + B\omega^2 T \exp(-C/T)$$

• Diffuse mismatch model (DMM) is used for interfacial phonon transport,

$$T_{12}(\omega) = \frac{\sum_{\rho} v_{2,g,\rho}(\omega) D_{2,\rho}(\omega)}{\sum_{\rho} v_{1,g,\rho}(\omega) D_{1,\rho}(\omega) + \sum_{\rho} v_{2,g,\rho}(\omega) D_{2,\rho}(\omega)}$$

Phonon Dispersion and Relaxation time

Parameter (Unit)	GaN	SiC
$k_0 (1 imes 10^9 { m m}^{-1})$	10.94	8.94
ω_m (1 $ imes$ 10 ¹³ rad/s)	3.50	7.12
$a_D(Å)$	2.87	3.51
$A(1 imes 10^{-45} { m s}^3)$	5.26	1.00
$B(1 imes 10^{-19}\mathrm{s/K})$	1.10	0.596
С(К)	200	235.0

Table 1: Fitted phonon dispersion and scattering parameters⁷.

⁷Q. Hao, H. Zhao, and Y. Xiao, "A hybrid simulation technique for electrothermal studies of two-dimensional GaN-on-SiC high electron mobility transistors," *Journal of Applied Physics*, vol. 121, no. 20, p. 204501, 2017.

Yang Shen

э

Phonon Dispersion and Relaxation time

Figure 7: Thermal conductivity from model calculations (line), and from experiments (symbols)⁸.

⁸Q. Hao, H. Zhao, and Y. Xiao, "Multi-length scale thermal simulations of GaN-on-SiC high electron mobility transistors," in *MultiscaleThermal Transport in Energy Systems*, Nova Science Publishers, 2016.

2 Methodologies

3

Results and Discussion

- Channel Temperature Reconstruction
- Heat Source-Related Ballistic Effect
- Cross-Plane Ballistic Effect

周 ト イ ヨ ト イ ヨ ト

2 Methodologies

8 Results and Discussion

- Channel Temperature Reconstruction
- Heat Source-Related Ballistic Effect
- Cross-Plane Ballistic Effect

4 Conclusion

伺 ト イヨト イヨト

Channel Temperature Distribution

Figure 8: Comparison of channel temperature distributions predicted by MC simulation and FEM with k_{bulk} at different biases with $P_{\text{diss}} = 5 \text{ W/mm}.$

Two-Heat-Source Model⁹

$$\begin{cases} P_1 = I_d V_d, P_2 = 0, & V_d \le V_{dsat} \\ P_1 = I_d V_{dsat}, P_2 = I_d (V_d - V_{dsat}), & V_d > V_{dsat} \end{cases}$$

 $V_d \leq V_{dsat}$: When the device is in the linear regime, all the heat is dissipated in HS1.

 $V_d > V_{dsat}$: As the channel is pinched-off and the device works in the saturation regime, the heat dissipated in HS1 stays the maximum, and excessive heat is only dissipated in HS2.

The heat source-related ballistic effect becomes noticeable when heat is dissipated in HS2.

⁹X. Chen, S. Boumaiza, and L. Wei, "Modeling bias dependence of self-heating in GaN HEMTs using two heat sources," *IEEE Transactions on Electron Devices*, vol. 67, no. 8, pp. 3082–3087, 2020.

・ロット (雪) (日) (日)

Channel Temperature Reconstruction

We use size-dependent film thermal conductivity to reflect the cross-plane ballistic effect, and set a very low thermal conductivity in HS2 to reflect the impact of heat source size-induced ballistic effect.

Figure 9: Schematic of channel temperature reconstruction.

Channel Temperature Reconstruction

Figure 10: Comparison of channel temperature distributions predicted by MC simulation and FEM with k_{eff} at different biases with $P_{diss} = 5 \text{ W/mm}.$

2 Methodologies

3 Results and Discussion

- Channel Temperature Reconstruction
- Heat Source-Related Ballistic Effect
- Cross-Plane Ballistic Effect

4 Conclusion

Influence of Heat Source-Related Ballistic Effect

Figure 11: Channel temperature, electron velocity, electric field, and electron mobility distributions at $V_g = -1 \text{ V}$, $V_d = 6.7 \text{ V}$.

< ロ > < 同 > < 回 > < 回 >

Device Output Characteristics

Figure 12: Output characteristics at different biases.

Phonon ballistic effect mainly exists in the high-field region, where the electron velocity is saturated.

★ ∃ → < ∃</p>

Simulation of Longer Gate HEMT

 $L_{g} = 1 \, \mu m, L_{sg} = 1 \, \mu m, L_{gd} = 3 \, \mu m$

Figure 13: Channel temperature, electron velocity, electric field, and electron mobility distributions at $V_g = -1 \text{ V}$, $V_d = 6.7 \text{ V}$.

イロト イポト イラト イラト

Device Output Characteristics

Figure 14: Output characteristics at different biases.

For a longer gate HEMT, the source side of gated channel is not saturated. However, the heat source is still concentrated at drain-side gate edge.

- - E > - E >

Methodologies

Results and Discussion

- Channel Temperature Reconstruction
- Heat Source-Related Ballistic Effect
- Cross-Plane Ballistic Effect

4 Conclusion

Influence of Cross-Plane Ballistic Effect

Figure 15: Channel temperature, electron velocity, electric field, and electron mobility distributions at $V_g = 0$ V, $V_d = 10$ V.

Device Output Characteristics

Figure 16: Output characteristics at different biases.

< ロ > < 同 > < 回 > < 回 >

Equivalent Channel Temperature¹⁰

Figure 17: Left: channel temperature profiles at four different biases. Right: Equivalent channel temperature and maximum channel temperature versus the power dissipation.

All the conclusions remain reliable after considering phonon transport, no additional modifications are necessary.

< ロ > < 同 > < 回 > < 回 >

¹⁰X. Chen, S. Boumaiza, and L. Wei, "Self-heating and equivalent channel temperature in short gate length GaN HEMTs," *IEEE Transactions on Electron Devices*, vol. 66, no. 9, pp. 3748–3755, 2019.

Introduction

- 2 Methodologies
- 3 Results and Discussion
- 4 Conclusion

э

< 回 > < 回 > < 回 >

Conclusion

We have investigated self-heating in GaN HEMTs by integrating TCAD and phonon MC simulations.

We have examined the influence of the phonon ballistic effect on electrical performance by setting a low local thermal conductivity in the high-field region and re-conducting electrothermal TCAD simulations.

Our findings reveal that, due to velocity saturation, the electrical performance is nearly unaffected by the heat source-induced ballistic effect. Instead, it is primarily governed by the film thickness-dependent cross-plane ballistic effect.

・ロッ ・ 母 ・ ・ ヨ ・ ・ ヨ ・ ・

Thank You!

< ロ > < 同 > < 回 > < 回 > .

3