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Abstract 

This study focuses on the diffusion phenomena in ethanol-water systems. The diffusion coefficient of ethanol-water systems has a 

strong concentration dependency originating from intermolecular interactions and the association of molecules in solution. To 

quantitatively evaluate the concentration dependency in the diffusion process, the inverse analysis was conducted by genetic algorithm 

with deterministic crowding, finite differential method and weighting method.  
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I. BASIC WORKFLOW 

In this study, the diffusion process was assumed to be isothermal and one-dimensional free diffusion. Thus, the governing 
equation of this diffusion process can be approximate as: 
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D(C) = D0 + αC + βC2 (2.) 

Where x [m] is location, t [sec] is time, C[-] is the standardized concentration, and D [m2/s] is the mass diffusion coefficient 
which is a function of concentration. D0, α and β are coefficients used to represent concentration dependence of the mass 
diffusion coefficients quantitively. In the numerical simulation, Eq. (1) was discretized using the finite differential method as 
follows: 
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 where the subscript i represents the ith grid position, and the superscript n represents nth time interval. The whole spatial length 
is 20mm, the number of the spatial grids is 250 and the time step is 2s. For the initial conditions, a concentration distribution was 
obtained from the visualization experiment. At arbitrary elapsed diffusion time, the difference between the experimental and 
numerical concentration distribution was compared using an objective function f for inverse analysis, which is given by 
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Where 250 is the number of grids, 𝑐𝑐𝑎𝑙  and 𝑐𝑒𝑥𝑝 are the calculation concentration and experimental concentration of every 

different grid, respectively. In a typical experiment, there would be concentration data of thousands of pixels, to match the 
calculation results and weaken the stochastic error form data, the experimental concentration was interpolated into 250 points, 
which share the same position of spatial grids in FDM.  

 

Fig. 1. Interpolation of experimental data 



 

 

By maximizing the objective function f(D), the integrated difference of concentration between experimental and numerical 
results in the target concentration range is minimized, and the diffusion coefficient and its concentration dependency are 
determined. 

 

II. GENETICE ALGORITHM WITH DETERMINISTC CROWDING 

 Genetic algorithms are stochastic search and optimization methods imitating the process of evolution wherein a set of 
solutions evolves over a sequence of generations. In each generation, the fitness of each solution is evaluated, good solutions 
with a higher fitness are selected and poor solutions are eliminated. The selected solutions then undergo crossover and mutation 
process, which will create new solutions on the basis of good solutions in order to explore new solution space. After a sequence 
of generations, the global maximum of objective function is located and the corresponding  solution is determined.  

However, there are some limitations of traditional simple GA(SGA), one of the most significant demerits is premature 
convergence, which means the algorithm is possible to trap into local optimum when dealing with the high-dimension function 
with too many local optima. To solve this problem, many improvements were proposed, by comparing the performance of many 
different methods in our problem, we finally employ deterministic crowding (DC) variation in SGA, which is first proposed by 
De Jong[1] to preserve diversity in the population and to prevent premature convergence to local optima. 

DC works as follows: 

1) Initialization: randomly generate n individuals 

2) Selection: 

(REPEAT for g generations) 

DO n/2 times: 

1. select 2 parents, p1 and p2 randomly 

2. cross and mutation, yielding c1 and c2 

3. IF [d (p1,c1) + d (p2,c2)] ≤ [d (p1,c2) + d (p2,c1)] 

⚫ IF f (c1) > f (p1) replace p1 with c1 

⚫ IF f (c2) > f (p2) replace p2 with c1 

ELSE 

⚫ IF f (c2) > f (p1) replace p1 with c2 

⚫ IF f (c1) > f (p2) replace p2 with c1 

Where n is the size of the population and g is the number of generations. d (p1,c1) is the distance between p1 and c1, which 
has different definitions like Euclidean distance and Hamming distance. For simplicity, here in our code we just defined it as the 
Euclidean distance between two phenotypes. For example,  if p1 =(D01, 𝛼1, 𝛽1) and c1 =(D02, 𝛼2, 𝛽2), then 

𝑑(𝑝1, 𝑐1)  =  √(D01 − D02)2 + (α1 − α2)2 + (β1 − β2)2 (5) 

 

Also, to enhance the precision of the algorithm, multi-point crossover and grey code were also applied. The basic parameters 
set in algorithm are shown as follows: 

TABLE I.  BASIC PARAMETERS OF ALGORITHM 

Population size Number of generations Probability 

crossover mutation 

50 100 0.82 0.07 

 

The population size and number of generations were set by some trails, in this inverse analysis, the algorithm can converge 

with this setting. The probability of crossover and mutation was optimized by TPE approach (Tree-structured Parzen Estimator). 

For the detailed information please find in reference.[2] 

 

       

III. VERIFICATION OF INVERSE ANALYSIS 

A. Verification of Finite Differential Method 

 



 

 

To verify the feasibility of the discretization scheme, the same simulation was conducted by FDM and COMSOL 

respectively. The initial condition taken is c = 8.3e-3 [mol/m3]from -10 to 0 [mm], c = 0 from 0 to 10 [mm], and the diffusion 

coefficient is set as 1e-9 [m2/s]. The calculation results are shown in figure 2.  

 
Fig. 2. The concentration filed calculated by FDM and COMSOL 

 

It can be seen that the concentration profile calculated by FDM agrees very well with the one calculated by COMSOL (finite 

element method). Although numerical result is not completely identical to the experiment, for 1D diffusion model we can 

assume that the discretized scheme we take is reliable.  

B. Verification of Algorithm 

To validate the capability of the algorithm for inverse analysis, the test was conducted as follows: 

The values of D0 , α and β were manually set at first, and the concentration profile calculated at different elapsed time by 
given coefficients were taken as ‘experiment data’. Then examine whether the program can give the same values as manual set. 
The test results are shown in table 2.  

TABLE II.  TEST INVERSION RESULTS BY GENETIC ALGORITHM 

 

From the results, there is a big discrepancy between the real values and the inverted results calculated by SGA, and we can 
see that the deterministic crowding technique and grey code can enhance the performance of the program dramatically - the 
relative error of every coefficient was less than 1% which confirms that DCGA is workable in this inverse problem.  

IV. RESULTS 

Concerning for real experimental data, the different time interval will have an impact on inverse analysis because two 
diffusion field with an short elapsed time may be more vulnerable to the random disturbance, different combinations of start-end 

average

D0 1.086 1.12 1.1 1.078 1.078 1.05 1.133 1.093167 1% 0.007166667
α -0.86 -1.03 -1 -0.832 -0.89 -0.965 -1.1 -0.9695 13% 0.1095
β 0.57 0.724 0.712 0.554 0.605 0.712 0.787 0.682333 20% 0.112333333

D0 1.086 1.13 1.13 1.11 1.086 1.125 1.11 1.115167 3% 0.029166667
α -0.86 -1.08 -0.927 -0.91 -1.06 -1.016 -1.05 -1.00717 17% 0.147166667
β 0.57 0.787 0.58 0.611 -0.8 0.712 0.737 0.437833 23% 0.132166667

D0 1.086 1.11 1.11 1 1.1 1.078 1.09 1.081333 0% 0.004666667
α -0.86 -0.997 -0.959 -0.92 -1.07 -0.8 -0.83 -0.92933 8% 0.069333333
β 0.57 0.7 0.66 0.62 0.77 0.517 0.54 0.6345 11% 0.0645

D0 1.086 1.09 1.1 1.09 1.09 1.09 1.09 1.091667 1% 0.005666667
α -0.86 -0.85 -0.94 -0.87 -0.851 -0.88 -0.84 -0.87183 1% 0.011833333
β 0.57 0.554 0.64 0.58 0.554 0.586 0.554 0.578 1% 0.008

METHOD CODE PARAMETER VALUE
Predicted Value at Different Diffusion Time

Absolute Error
600s/FITNESS 1200s/FITNESS 1800s/FITNESS 2400s/FITNESS 3000s/FITNESS 3600s/FITNESS

Relative Error

Simple GA(SGA)

BINARY 99.2 99.72 99.25 77.13 94.92

GREY 96.25 87.09 97.96 93.24 95.41 94.6

99

Deterministic Crowding GA(DCGA)

BINARY 99.92 99.83 99.41 99.15 99.8

GREY 99.92 99.86 99.97 99.85 99.58 99.9

99.42



 

 

couples were chosen. For example, START = 1200s, END = 3000s means that the initial concentration profile chosen is the 
diffusion field in 1200s and the end is the one in 3000s. The inversion results are shown in figure 4.  

The curve marked as Reference in the figure 4 was from Komiya’s work[3], who collected the experimental data of diffusion 
coefficients in ethanol-water solution reported in many literatures and fitted them with quadratic function. From the results, it can 
be seen that when choosing early stages (before 2400s) as initial concentration profile, the concentration dependency of mass 
diffusion coefficient is strongly quadratic, which contradicts the relationship got from experiments, but after 2400s, the calculated 
dependency becomes linear which shows the very different tendency. To explain this phenomenon, the assumption we proposed 
is that before 2400s, the injection disturbance still had a strong impact on the diffusion process, till 2400s, it didn’t dominate the 
system any more. To verify this hypothesis and quantify this injection disturbance, we propose a weighting method for inverse 
analysis which is shown in figure 5. We divide the whole diffusion region into 5 parts, f1 and f5 are constant concentration part, 
which is the least important for the inverse analysis, f2 and f4 are transition parts which have the highest second-order derivate, 
f2 represents the low concentration part and f4 represents the high concentration part. f3 represents the middle linear concentration 
part which has the highest first-order derivate and very low second-order derivative. The revised fitness function is defined as: 
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(5) 

By putting a different weighting factor to the fitness function in different region, stability of inverse analysis and injection 
disturbance were investigated. The details are shown in figure 6,7,8 and 9. 

 
Fig. 5. Scheme for weighting method 

Fig. 4. Inversion results 



 

 

 

with a high weighting in high concentration region (figure 6), it can be observed that when choosing a relatively early stage 
(before 2400s) as an initial concentration profile, there is a big discrepancy between calculation dependency and reference one. 
However, as start time increases, the difference becomes smaller. When the start time reaches 2400s, the difference nearly 
becomes zero in high concentration region. This result strongly suggests our previous hypothesis about injection disturbance, and 
it seems that only until 2400s the physical process becomes a pure diffusion process. Also, with a high weighting in low 
concentration region, it can be observed that since 1800s the calculation results converge to the literature data. It’s also a valid 
argument to our assumption because in experiments, we injected ethanol to pure water, so compared with high concentration 
region, low concentration region is relatively less susceptible to injection. However, when putting a high weighting in middle 
linear part, all the dependencies GA predicted become strongly quadratic. From the results, we can dope out some characteristics 
of this inverse analysis: for the concentration transition parts, the solution space is more stable, although there may be small error 
in the experimental data, the dependency still gets around the real value. But for the middle linear part, it’s very instable and 
chaotic, which means that even a little error in the experiment will lead to a big discrepancy to the result. By putting a high 
weighting in both low and high concentration region, we get the result shown in figure.9. it can be seen that for the combinations 

withΔt =  600s, the predicted dependency doesn’t  correspond with the ones calculated by the same initial concentration profile. 

It also fits our guess that this may be due to 600s interval for diffusion is too small, so that the concentration difference led by 
diffusion doesn’t surpass the accumulative error in experiment and simulation a lot which contributes to the wrong result. 

Fig. 6. High weight in high concentration region 

 

Fig. 8. High weight in middle concentration region 

 

 

Fig. 7. High weight in low concentration region 

 
 

Fig. 9. High weight in high and low concentration region 



 

 

Finally, after the analysis of injection disturbance and the effect of time interval, the only combination valid in our 
experimental data is 2400s-3600s. And it can be seen this predicted dependency conforms to the literature dependency very well 
(figure.14) which also indirectly verifies that our hypothesis and analysis. 

 

V. CONCLUSIONS 

In this study, the concentration dependency of diffusion coefficient in ethanol-water solution was determined by inverse 
analysis, the main conclusions of this study are summarized as following points: 

1) Developed a program based on genetic algorithm with deterministic crowding, FDM and weighting method to determine 

the concentration dependency of mass diffusion coefficient and verified the feasibility of the algorithm 

2) Analyzed the injection disturbance and examined the stability of the inverse analysis. 

3) Acquired the concentration dependency of mass diffusion coefficient in ethanol-water solution in less 2% difference with 

the fitting of lots of experimental data reported in the literature 

 

To get a more complete verification of this inverse analysis method, the performance of the program on more different 

kinds of solutions should be tested. 
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Fig. 10. High weight in high and low concentration region 
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