RP-3 超临界压力下热物性替代物模型研究

沈扬, 刘源斌, 曹炳阳*

清华大学航天航空学院 工程热物理研究所

背景介绍

飞行器在超声速、高超声速状态下的冷却一直是研究人员关注的 重点问题。目前应用最广泛的飞行器冷却方式之一是再生冷却循 环系统,即在航空煤油进入燃烧室之前,先将其用作冷却剂去吸 收机体的热量. 在实际工作过程中, 航空煤油往往工作在超临界 压力下,因此,准确地获取超临界状态下航空煤油的各热物性对 换热研究具有重要的意义.

由于实际碳氢燃料的组成极为复杂,因此目前常采用选取代表性 组分组成替代模型的方法,去模拟实际燃料的性质.针对国产航 空煤油 RP-3,目前已有的替代物模型在计算其超临界状态下各热 物性往往存在以下问题:

▶ 整体相对误差仍然较大,且往往在预测某一种物性上表现很好,

而无法准确预测另一种物性.

▶模型计算结果在温度较高时和实验值偏离加大

本文旨在构建能够较准确预测在超临界压力下,320 K ~ 770 K 温 度范围内,RP-3 密度、粘度、比热容和热导率的热物性替代模型. 模型的构建方法如右所示.

广义对应态法则

对应态法则揭示了不同流体之间的相似性,基于该理论,未知流 体的热物性可以由参考流体的热物性计算得到. 广义对应态法则 在两参数对应态法则的基础上引入了新的参数偏心因子 ω ,以反 映不同分子结构对物性计算的影响.本文中替代模型的热物性调 用 supertrapp 软件来计算.

对应态法则

$$h_x = \rho_r^c / \rho^c; f_x = T^c / T_r^e$$

$$\rho_r = h_x \rho; T_r = T / f_x$$

$$Z_x(T, \rho) = Z_r(T_r, \rho_r)$$

偏心因子

$$\omega = -\log(\frac{p_s}{p_c}) - 1$$
, when $T_r = 0.7$

消葬大学

Figure 1: RP-3-C4+ 模型构建流程示意图

模型构成

Table 1: RP-3-C4+ 模型和原始 C4 模型组分对比

	Chemical formula	Surrogate model components in mole fraction						
Species		C4 Model	RP3-C4+ Model					
			μ	ρ	λ	Cp ^a		
n-decane	C10H22	0.2030	$0.6320 \times (1 - f(T, P))^{H}$	$\mathbf{P}0.6220 \times (1 - \mathbf{g}(\mathbf{T}, \mathbf{P}))^{c}$	0.1430	0.6850		
n-dodecane	C12H26	0.3810	$0.1520 \times (1 - f(T, P))$	$0.1100 \times (1 - g(\mathrm{T}, \mathrm{P}))$	0	0.2913		
methylcyclohexane	C7H14	0.1470	$0.2160 \times (1 - f(T, P))$	0	0	0.0237		
n-butylbenzene	C10H14	0.2690	0	$0.2680 \times (1 - g(\mathrm{T}, \mathrm{P}))$	0.8570	0		
cyclohexane	C6H12	0	0	g(T, P)	0	0		
octadecane	C18H38	0	f(T, P)	0	0	0		
^a Multiply calcula	ation result by (7.7)	78×10^{-4} T	$\Gamma + 0.7104)$					
^b $f(T, P) = \max$	(0.0054T - 0.19P)	-2.97,0)	,					
$\int 0$			T < 1	690 K				
$g(1,P) = \begin{cases} m \\ m \end{cases}$	in(1, max(0.68P -	-1.44,0))	$\times (0.01\mathrm{T} - 6.9) T \ge 0$	690 K				
(, , , ,						

形状因子

$$h_{x} = (\rho_{r}^{c}/\rho^{c}) \varphi (T/T_{c}, \rho/\rho_{c}, \omega)$$

$$f_{x} = (T^{c}/T_{r}^{c}) \theta (T/T_{c}, \rho/\rho_{c}, \omega)$$

MWBR 状态方程

$$P = \sum_{n=1}^{9} a_n(T)\rho^n + \sum_{n=10}^{15} a_n(T)\rho^{2n-17} e^{-r\rho^2}$$

优化过程

Algorithm 1: deterministic crowding 随机生成 n 个个体; **Repeat for** *g* **generations**: **Do** n/2 times: 随机选取两个个体, p_1 , p_2 ; 交叉、重组,生成两个子代 c_1, c_2 ; if $d(p_1, c_1) + d(p_2, c_2) \le [d(p_1, c_2) + d(p_2, c_1)]$ then if $f(c_1) > f(p_1)$ then 用 c_1 替换 p_1 ; if $f(c_2) > f(p_2)$ then 用 c_2 替换 p_2 ; else if $f(c_2) > f(p_1)$ then 用 c_2 替换 p_1 ; if $f(c_1) > f(p_2)$ then 用 c_1 替换 p_2 ;

个体 不同摩尔分数分配的模型.

适应度函数 f

各压力、温度下物性计算值和实验值的相对误差之和的倒数. 距离d

若两个个体所代表的摩尔分数分别为:

$$p = (p_1, p_2, p_3, p_4)$$
 $Bc = (c_1, c_2, c_3, c_4)$

则:

$$d(p,c) = \sqrt{\sum_{i} (p_i - c_i)^2}$$

相对误差

Table 2: 各温度、压力下对于不同物性 RP-3-C4+ 模型和 C4 模型计算值与实验值平均与最大相对误差之比

替代模型	物性	2.33Mpa		3Mpa		4Mpa		5Mpa	
		Ave Err (%)	Max Err (%)						
C4	0	7.87	140.10	11.43	49.22	17.56	108.06	10.73	99.25
RP-3-C4+	ho	3.35	21.34	3.26	13.44	3.16	13.76	4.05	12.16
C4		23.29	122.6	25.44	115.54	23.74	56.66	21.35	45.90
RP-3-C4+	μ	5.23	56.84	3.70	9.06	3.23	7.46	3.11	7.41
C4	C _p	14.38	31.86	14.00	27.96	15.06	28.40	14.86	28.89
RP-3-C4+		3.24	13.98	3.65	12.06	3.19	7.91	1.74	5.79
C4		8.94	11.75	9.94	12.06	10.05	12.65	10.65	13.34
RP-3-C4+	μ	3.27	5.67	4.21	5.80	4.26	6.29	4.76	6.88

http://www.heatenergist.org

May 26, 2022

shen-y17@mails.tsinghua.edu.cn